
An FPGA NIC Based Hardware Caching for Blockchain

Yuma Sakakibara, Kohei Nakamura, and Hiroki Matsutani

Keio University, 3­14­1 Hiyoshi, Kohoku­ku, Yokohama, Japan
{yuma,nakamura,matutani}@arc.ics.keio.ac.jp

ABSTRACT
These days, people pay attention to Blockchain, which is a
main technology of cryptocurrency. Blockchain is a fault-
tolerant distributed ledger that does not need an administra-
tor. We call transfer of digital asset as a “transaction”. We
need to hold all transactions to use Blockchain. Therefore, the
amount of Blockchain data increases as time proceeds. On the
other hand, the number of Internet of Things (IoT) products
like smartphones has been increasing. It is difficult for IoT
products to hold all Blockchain data because of their data
capacity. Thus, they access Blockchain network via servers
that have enough data capacity. More and more IoT prod-
ucts will join Blockchain network via servers, so it is useful to
reduce workloads and improve throughput. In this paper, we
propose caching technique using a Field Programmable Gate
Array-based (FPGA) Network Interface Card (NIC) that has
10Gigabit Ethernet (10GbE) interfaces. More concretely, a
Blockchain server receives a request from IoT products at the
first time. Then, the server stores data on on-board DRAM of
an FPGA NIC. Subsequently, FPGA NIC instead of the server
responds to IoT products if the cache hits, so it can reduce
server workloads. We implemented the proposed hardware
cache to achieve high throughput on NetFPGA-10G board.
We counted the number of requests that the Blockchain server
processed at a given time and calculated throughput as eval-
uation. Throughput improved from 6.73 to 7.45 times when
hitting the cache.

1. INTRODUCTION
Blockchain, which is a core technology of cryptocurrency,

is a distributed ledger. It is also a digital payment system [1]
using Peer-to-Peer (P2P) network which is fault-tolerant. Cur-
rently, financial business pay attention to Blockchain. For ex-
ample, National Association of Securities Dealers Automated
Quotations (NASDAQ) has developed “NASDAQ LINQ” [2],
which is a new undisclosed stock distribution system to man-
age transactions effectively. In the near future, Blockchain will
be more general system to be applied to various industry.

We call transfer of digital asset as a transaction. Blockchain
makes a block by aggregating transactions at the interval of
about 10 minutes. Networking nodes approve the block, and
then it is connected to Blockchain. Blockchain is composed
of all the transactions. Therefore, Blockchain data increases
as time passes. For example, there are over 100GB of all the
Blockchain data [3]. On the other hand, the number of IoT
products [4] like smartphones has been growing. Generally,
IoT products do not have enough data capacity compared to
servers, so it is difficult for them to hold all the Blockchain

This work was presented in part at the international symposium on Highly­
Efficient Accelerators and Reconfigurable Technologies (HEART2017)
Bochum, DE, June 7­9, 2017.

data. To solve this problem, there is a system that servers
hold all Blockchain data and IoT products receive a part of
data in order to verify whether the transaction has already
been approved by networking nodes or not [5]. In other words,
the system enables IoT products access Blockchain via servers.
However, the more the number of IoT products increases, the
larger server workloads are needed. Therefore, it is important
for servers to decrease their workloads.

In this paper, we propose hardware cache using an FPGA
NIC in order to decrease server workloads. To be more specific,
we design and implement key-value stores (KVS) hardware
cache on an NetFPGA-10G board, which has a networking in-
terface card with four 10GbE interfaces and an FPGA device.
We evaluate throughput both when the cache hits and misses.
As the result of evaluation, throughput improved by at most
7.45 times when hitting cache.

The rest of this paper is organized as follows. Section 2 in-
troduces FPGA accelerators and issues of Blockchain. Section
3 illustrates our hardware cache using FPGA NIC. Section 4
evaluates throughput. Section 5 concludes this paper.

2. BACKGROUND

2.1 Related Technology

2.1.1 Data Structure of Blockchain
Figure 1 shows the structure of Blockchain. Blockchain is

a list of blocks, each of which is composed of a block header
and a list of transactions [6]. The block header is made of
three sets of block metadata. First, “Previous Block Hash”
connects the block to the previous block in the Blockchain.
Second, “Difficulty Target”, “Timestamp” and “Nonce” are
related data to the mining competition. Third, “Merkle root”
is a data structure used to efficiently summarize all the trans-
actions in the block [6]. A transaction is a data structure that
shows a transfer of digital asset from a source to a destination.
A transaction can be created by anyone and then signed with
digital signatures. Then, the transaction is broadcasted on
the network while it is validated by network nodes. Finally,
the mining node verifies the transaction and makes a block
[6]. It is important that the transaction is valid only when it
is verified by a mining node and becomes part of Blockchain.

2.1.2 Merkle Tree
It is inefficient to verify all the transactions in the block

in order to know whether the transaction has already been
approved by networking nodes or not. Accordingly, there is
a data structure called Merkle tree to verify the transaction
efficiently. Figure 2 shows the structure of a Merkle tree. In
Figure 2, transactions are expressed as Tx0, Tx1, Tx2, Tx3
and a hashed value of Tx0 is expressed as H0. A Merkle tree is
a binary hash tree that summarizes transactions of the block.
A Merkle tree is made by connecting recursively hashed value



Figure 1: Structure of Blockchain

Figure 2: Structure of Merkle Tree

Figure 3: Producing Merkle Path

pairs of nodes until there is only one hash. The root of this
tree is called a Merkle root. Even if there are thousands of
transactions in a block, the size of Merkle root is always 32
Bytes as same as a transaction hash.
A node can prove whether a specific transaction is included

in a block by producing 32log2N Bytes hashed values if N
transactions are included in a block. These hashed values
which connect the specific transaction with the Merkle root
are called Merkle path. In Figure 3, a node proves that a
transaction d is included in a block by producing the Merkle
path. The Merkle path consists of the three-hashed values
Hc, Hab and Hefgh. The broken line in Figure 3 indicates the
Merkle path of the transaction d. There are only three-hashed
values of 3 × 32 = 96 Bytes are needed although there are
eight transactions of 8 × 32 = 256 Bytes in the block. Thus,
a Merkle tree is efficient to prove that the specific transaction
is included in the block.

2.1.3 Types of Nodes
The network of Blockchain is peer-to-peer network. Even

though all nodes are equal in the peer-to-peer network, IoT

products are unable to hold all the transactions. Therefore,
nodes are classified depending on the functionality[6]. Func-
tions are shown below.

• Wallet: a function of managing payment

• Miner: a funcntion of generating blocks by calculating
hashes

• Blockchain Database: a function of managing all the
transactions

• Routing: a function of participating in the network

A node which has all the functions above is called a Full node.
Full nodes can verify all the transactions without any help of
other nodes, but they require substantial computational re-
sources. On the other hand, there is a node that does not
require rich computational resources called a simplified pay-
ment verification (SPV) node [7]. The SPV node does not
maintain all the transactions, but a block header. The chain
of blocks, without transactions, is 1,000 times smaller than the
full Blockchain [6]. Thus, IoT products such as smartphones,
tablets and embedded systems can participate in Blockchain
network as SPV nodes.

2.2 Related Work
We introduce previous work that is related to Blockchain

and hardware cache using FPGA NIC.
There is previous work to achieve high throughput using

KVS implemented on FPGAs. Memcached is a distributed in-
memory KVS that improves response time of web servers by
caching requested data on DRAMs in distributed servers. To
improve energy efficiency of memcached, FPGA appliance has
been proposed. As shown in [8], they proposed the design of
memcached architecture implemented on FPGAs to achieve
10Gbps line rate processing. In [9], they proposed that the
software memcached running on the host CPU by caching data
and some operations at the FPGA NIC mounted on the server.
In [10], they proposed a multilevel NoSQL cache architecture
that utilized both the hardware cache of FPGA and software
cache implemented in kernel.
Blockchain, a distributed ledger, achieved pseudonymous

online payment, cheap remittance and digital asset exchange
without an enormous central system [11]. On the other hand,
Blockchain has scalability limits that trade-off between through-
put and latency. The performance of Blockchain protocols
is restricted by two parameters, block size and block inter-
val. Increasing block size improves throughput, but the big-
ger blocks take longer to spread in the network [11]. There-
fore, in [11], they proposed Bitcoin-NG, a scalable Blockchain
protocol. The latency is limited only by the propagation de-
lay of the network. Originally, Blockchain has been a core
technology of cryptocurrecy without reliable financial insti-
tution. In addition to it, these days, a distributed applica-
tion platform based on Blockchain is proposed. In [12], they
proposed Ethereum, a transaction-based state machine. In
[13], they proposed BigchainDB. BigchainDB is a decentral-
ized database with Blockchain characteristics: decentralized
control, immutability and creation or movement of digital as-
sets. It combines the benefits of distributed databases and
traditional Blockchain [13].

2.3 Summary
Traditional Blockchain realized digital asset exchange with-

out an enormous central system to manage all the transac-
tions. However, compared to other payment systems, the
Blockchain protocol limited scalability and throughput. To
make matters worse, increasing IoT products causes low through-
put between a server and IoT products. To solve this prob-
lem, many previous researches have proposed design of new



Figure 4: Structure of Simple Block

Figure 5: Verification of Transaction on SPV Node

Blockchain protocol. On the other hand, we propose KVS
hardware cache to solve this problem.

3. HARDWARE CACHE ARCHITECTURE

3.1 Design
In this paper, we design and implement KVS hardware cache

on FPGA NIC to respond promptly to SPV nodes when it
verifies the transaction. SPV nodes do not possess all the
transactions, so they cannot verify whether the transaction is
included in the block or not by themselves. Thus, SPV nodes
verify the transaction by accessing Blockchain via a Full node.
In this section, we introduce structure of a simple block and
how to verify a transaction on the SPV node, and then propose
design and implementation of hardware cache.

3.1.1 Structure of Simple Block
For simplicity, we redesign structure of a block. Figure 4

illustrates structure of a simple block. The block header in-
cludes “Previous Block Hash”, “Merkle Root” and “Times-
tamp”. The transaction includes “Id”, “Timestamp”, “Source
User Address” and “Destination User Address”, “Amount”
and “Transaction Hash”. This structure can identify trans-
action from Source User Address, so the Full node can easily
find out the transaction.

3.1.2 Verification of Transaction on SPV Node
Figure 5 shows verification of a transaction. In order to

prove that the transaction has already been approved by other
nodes and has become a part of Blockchain, an SPV node
checks that the Merkle root made by the Merkle path corre-
sponds with Merkle roots in block headers. We will explain
how the SPV node verifies the transaction below.

Step 1: Receive block headers. An SPV Node receives
block headers from a Full node at regular intervals, so the
SPV node can extract Merkle roots from block headers (i.e.
“Synchronize as always” in Figure 5).

Figure 6: Proposed Hardware Cache System

Step 2: Send source user address to acquire the Merkle
path. The SPV node sends the source user address to the Full
node (i.e. “Get request” in Figure 5). The Full node receives
the source user address and searches Blockchain for the latest
transaction of the client based on the source user address.
Then, the Full node makes the Merkle path corresponding to
the transaction. After that, the Full node sends the Merkle
path to the SPV node (i.e. “Get result” in Figure 5).

Step 3: Make and compare the Merkle root. The SPV
node has the transaction hash. Thus, it can make the Merkle
root by the transaction hash and the Merkle path by the Full
node. Then, the SPV node compares the Merkle root made
by the Merkle path with Merkle roots in block headers (i.e.
“Compare” in Figure 5).

If one of Merkle roots in block headers is identical to the
Merkle root made by the Merkle path, the transaction has
already been approved. Therefore, the SPV node can provide
service. Otherwise, the transaction has not yet been approved,
so the SPV node requests again.

3.1.3 Get Request and Set Operation
We define a request and an operation of the Full node and

the SPV node for hardware cache system.

• Get Request: The SPV node sends the source user ad-
dress and then receives the Merkle path of client’s latest
transaction.

• Set Operation: The Full node searches Blockchain for
the transaction based on source user address and make
Merkle path of the transaction. After that, the Full node
sends the Merkle path to the SPV node and then stores
it on the FPGA NIC.

In this paper, the proposed KVS hardware cache stores
“Source User Address” as the key and the Merkle path of
client’s latest transaction as the value. Figure 6 shows the
proposed hardware cache system for Blockchain and the bro-
ken arrow indicates the behavior of cache system when cache
misses while the bold arrow indicates the behavior of cache
system when cache hits.

Figure 7 illustrates the behavior of cache system when cache
misses while Figure 8 illustrates that of cache system when
cache hits.

• Cache miss behavior

An FPGA NIC receives the key and acquires the value
from on-board DRAM. If a valid flag is equal to zero,
the FPGA NIC does not cache requested Merkle path.



Figure 7: Behavior When Cache Misses Figure 8: Behavior When Cache Hits

Therefore, it sends the key to the network protocol stack
of a Full node. Then, the Full node searches Blockchain
for the latest transaction of the client based on the key.
After that, the Full node makes the Merkle path cor-
responding to the transaction and it replies the Merkle
path (i.e. “Get result” in Figure 6) to the SPV node. Af-
ter that, the Merkle path is cached on on-board DRAM
of FPGA NIC.

• Cache hit behavior

The FPGA NIC receives the key and acquires the value
from on-board DRAM. If the valid flag is not equal to
zero, it caches requested Merkle path. Thus, the FPGA
NIC replies the Merkle path (i.e. “Cached result” in
Figure 6) to the SPV node without the Full node. In this
case, the workload of the Full node decreased, because
FPGA NIC replies instead of the Full node.

3.2 Implementation
In Section 3.1, we designed KVS hardware cache in which

the key is the source user address and the value is the Merkle
path of user’s latest transaction. In Section 3.2, we imple-
mented KVS hardware cache in which the key is a 24-bit in-
dex generated from the source user address and the value is
the Merkle root of user’s latest transaction by considering the
on-board DRAM size. Processing mechanism of FPGA NIC
can be divided in three parts: payload extracting, accessing
on-board DRAM of FPGA NIC and packet forwarding.

3.2.1 Payload Extracting
We employ User Datagram Protocol (UDP) as network pro-

tocol. Compared to Transmission Control Protocol (TCP),
UDP is suitable for stream processing, because UDP is con-
nectionless communication. Generally, payload in UDP packet
is variable length. Payload of the UDP packet is the Merkle
root of the client’s latest transaction. In this paper, the length
of UDP packets is 74 Bytes, because header length is 42 Bytes
and payload is 32 Bytes. Advanced Extensible Interface (AXI)
of NetFPGA-10G processes 32 Bytes in a cycle.
We assume that all the UDP packets whose destination port

is pre-specified port number have keys and we call these pack-
ets as requesting packets. If an FPGA NIC receives a request-
ing packet, it extracts payload as the key. Otherwise, the
FPGA NIC forwards packets to network protocol stack. To
sum up, the FPGA distinguishes requesting packets from all
the packets based on the destination UDP port. This process
is called packet filtering.

3.2.2 Accessing On­Board DRAM of FPGA NIC
The Merkle root of the client’s latest transaction, which is

payload of the UDP packet, is corresponding to memory ad-
dress of on-board DRAM. The FPGA needs to stop receiv-

ing new packets while accessing on-board DRAM, because the
access latency is larger than the processing speed of FPGA.
Therefore, the FPGA controls accessing on-board DRAM. The
FPGA waits until on-board DRAM can be accessed. If it
writes data on on-board DRAM, it validates write enable sig-
nal and sends write data and address to on-board DRAM in-
terface. Memory address of on-board DRAM is generated by
the source user address as a 24-bit index. If data is written to
it, FPGA validates write done signal. On the other hand, if
it reads data from on-board DRAM, it validates read enable
signal and sends read address to on-board DRAM interface.
If data is read from it, FPGA validates read done signal. The
FPGA NIC receives next packet right after the process for the
packet is done.

3.2.3 Packet Forwarding
The FPGA decides the node to send the packet depending

on the value from on-board DRAM. If the valid flag is equal
to zero, there is no requested data on on-board DRAM (i.e.
cache misses). Thus, the received packet from the SPV node
is forwarded to network protocol stack of the Full node. On
the other hand, if the read data is not equal to it, requested
data exists on on-board DRAM. Thus, the FPGA makes new
UDP packet whose payload is the Merkle root of the client’s
latest transaction and return to the SPV node.

4. EXPERIMENTAL RESULTS

4.1 Evaluation Environment

4.1.1 FPGA NIC
In this paper, we employed NetFPGA-10G board [14], which

possess four 10GbE interfaces and Virtex-5 FPGA, as a pro-
grammable NIC and cached data as key-value pairs. Figure 9
shows NetFPGA-10G board. Table 1 shows the specification
of the NetFPGA-10G board. We implemented the hardware
cache with Verilog HDL based on RLDRAM Stream provided
by the NetFPGA-10G project [14] and used Xilinx ISE Sys-
tem Edition 13.4 for logic synthesis and place and route. We
implemented 10GbE MAC with IP core provided by Xilinx
and communication function provided by the NetFPGA-10G
project [14].

Table 1: Specification of NetFPGA-10G

FPGA Xilinx Virtex-5 (160MHz)
Optical Tranceiver Four SFP+ interfaces (10Gb × 4)
Serial Interface PCI Express Gen2 × 8



Figure 9: NetFPGA-10G Board

4.1.2 SPV Node and Full Node
Table 2 illustrates the specification of machines as SPV node

and Full node. In order to emulate significantly huge numbers
of SPV clients, we employ a single machine listed in Table 2.

Table 2: Specification of Machines

SPV Node Full Node
CPU Intel Core i5-3470S Intel Core i5-4460
Cores 4 4

Frequency 2.90GHz 3.20GHz
Memory 4GB 4GB

OS CentOS 6.8 Ubuntu 16.04

4.1.3 Evaluation Method
The SPV client machine sends packets fully utilizing 10GbE

bandwidth. We counted how many packets both the FPGA
NIC and the Full node can process in a pre-specified interval
and calculate throughput based on it. We employ the same
NetFPGA-10G board both when cache hits and misses. We
also employ NetFPGA Open Source Network Tester (OSNT)
[15] as the packet sender in order to utilize fully 10GbE band-
width. We made original C programs to implement SPV nodes
and Full nodes.

4.2 Preliminary Evaluations
In this paper, we counted the number of packets both when

cache hits and misses for evaluating our proposed hardware
cache. We did preliminary evaluation beforehand in order to
indicate that the number of SPV nodes and the number of
transactions in a block hardly affect throughput in our simpli-
fied model, because these parameters are only a part of factors
to determine the amount of total data. We did preliminary
evaluations with our original C programs instead of OSNT.

4.2.1 Throughput When Number of SPV Nodes Changes
Figure 10 shows that the relationship between the number of

all the transactions and throughput under the condition that
the number of SPV nodes was changed to 5, 10 and 20. Figure
10 indicates that the number of SPV nodes scarcely affects the
throughput.

4.2.2 Throughput When Number of Transactions in
Block Changes

Figure 11 shows that the relationship between the number
of transactions and throughput under the condition that the
number of transactions in a block was changed to 1024, 2048
and 4096. The number of transactions in a block has been
increasing. In [3], over 1,800 transactions are included in a

block on average. Figure 11 indicates that the number of SPV
nodes scarcely affects the throughput.

4.3 Hardware Cache Throughput
As the result of preliminary evaluation, throughput hardly

depends on the number of SPV nodes and the number of trans-
actions in a block, but depends on the number of all the trans-
actions. Thus, we fix that the number of SPV nodes is 5 and
the number of transactions in a block is 1024. Figure 12 shows
that the relationship between the number of all the transac-
tions and throughput both when cache hits and misses. In
Figure 12, throughput improved from 6.73 to 7.45 times when
the cache hits. We implemented software cache on the Full
node in the evaluation. This is why throughput for cache miss
is different from the max throughput in Figure 10 and Figure
11.

In this paper, we evaluated throughput both when cache hit
and missed. We also considered the relationship between the
hit rate of hardware cache and throughput. Assuming that H
is the hit rate of hardware cache, T0 is throughput when cache
misses and T100 is throughput when cache hits, throughput T
can be expressed as a linear equation below when the hit rate
is H.

T =
T100 − T0

100
H + T0 (1)

Throughput when cache misses depends on the number of all
the transactions, so the number of all the transactions changes
to 40,000, 240,000 and 480,000. In Figure 13, an error of
throughput is small so as to be able to ignore it when cache
misses.

5. SUMMARY
In this paper, we designed and implemented KVS hard-

ware cache on on-board DRAM of FPGA NIC that has four
10GbE network interfaces in order to reduce server workloads.
If cache hits, the FPGA NIC responses instead of the Full
node. Thus, the Full node can reduce its workload and soft-
ware overheads, because it does not need to access Blockchain
database. Throughput between the Full node and IoT prod-
ucts can also be improved. We evaluated how the number of
SPV nodes and the number of transactions in a block influ-
enced throughput as preliminary evaluation. As the result,
these two parameters hardly influenced throughput. There-
fore, we fixed these parameters when we evaluate hardware
cache throughput. For evaluation, the SPV node sent request
packets to the Full node via FPGA NIC using fully 10GbE
bandwidth. We counted the number of packets that both the
Full node and FPGA NIC processed and calculated through-
put based on it. As the result, throughput improved from 6.73
to 7.45 times when cache hit compared to when cache missed.
Please note that this is the first work to address the server
bottleneck of Blockchain which will be a crucial factor due to
the increase of SPV nodes or IoT products in the near future.

In this paper, we used on-board DRAM to implement KVS
hardware cache. The access latency of on-board DRAM is
larger than the processing speed of the FPGA, so memory
access can be bottleneck. Therefore, in the future, we will
consider employing BRAM Block in the FPGA to cache data
which are frequently used.

Acknowlegements This research presentation is sup-
ported in part by a research assistantship of a Grat-in-Aid
to the Program for Leading Graduate School for “Science for
Development of Super Mature Society” from Ministry of Edu-
cation, Culture, Sport, Science, and Technology in Japan and
in part by SECOM Science and Technology Foundation.

6. REFERENCES



Figure 10: Throughput When Number of
SPV Nodes Changes

Figure 11: Throughput When Number of Transactions
in Block Changes

Figure 12: Relationship between Number of All
Transactions and Throughput

[1] Kenji Saito and Hiroyuki Yamada. What’s So Different
about Blockchain?―Blockchain is a Probabilistic State
Machine. In Proceedings of the Distributed Computing
Systems Workshops (ICDCSW’16), pp. 168–175, 2016.

[2] Sarah Underwood. Blockchain beyond bitcoin.
Communications of the ACM, Vol. 59, No. 11, pp.
15–17, 2016.

[3] BLOCKCHAIN info. https://blockchain.info/ja/
charts/n-transactions-per-block#.

[4] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The
internet of things: A survey. Computer networks,
Vol. 54, No. 15, pp. 2787–2805, 2010.

[5] Adam Back, et al. Enabling blockchain innovations with
pegged sidechains.
https://blockstream.com/sidechains.pdf, 2014.

[6] Andreas M Antonopoulos. Mastering Bitcoin: unlocking
digital cryptocurrencies. O’Reilly Media, Inc., 2014.

[7] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic
Cash System. http://bitcoin.org/bitcoin.pdf, 2008.

[8] Michaela Blott, et al. Achieving 10Gbps Line-rate
Key-value Stores with FPGAs. In Proceedings of the

Figure 13: Relationship between Hit Rate of Hard-
ware Cache and Throughput

USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud’13), 2013.

[9] Eric S Fukuda, et al. Caching memcached at
reconfigurable network interface. In Proceedings of the
International Conference on Field Programmable Logic
and Applications (FPL’14), pp. 1–6, 2014.

[10] Yuta Tokusashi and Hiroki Matsutani. A Multilevel
NOSQL Cache Design Combining In-NIC and In-Kernel
Caches. In Proceedings of the High-Performance
Interconnects (HOTI’16), pp. 60–67, 2016.

[11] Ittay Eyal, et al. Bitcoin-NG: A scalable blockchain
protocol. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation
(NSDI’16), pp. 45–59, 2016.

[12] Gavin Wood. Ethereum: A secure decentralised
generalised transaction ledger, 2014.

[13] Trent McConaghy, et al. BigchainDB: A Scalable
Blockchain Database, 2016.

[14] The NetFPGA Project. http://netfpga.org/.
[15] Open Source Network Tester.

https://github.com/NetFPGA/OSNT-Public/wiki.


