
1350
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.5 MAY 2018

PAPER

A Hardware-Based Caching System on FPGA NIC for Blockchain

Yuma SAKAKIBARA†a), Nonmember, Shin MORISHIMA†, Member, Kohei NAKAMURA†, Nonmember,
and Hiroki MATSUTANI†, Member

SUMMARY Engineers and researchers have recently paid attention to
Blockchain. Blockchain is a fault-tolerant distributed ledger without ad-
ministrators. Blockchain is originally derived from cryptocurrency, but it
is possible to be applied to other industries. Transferring digital asset is
called a transaction. Blockchain holds all transactions, so the total amount
of Blockchain data will increase as time proceeds. On the other hand, the
number of Internet of Things (IoT) products has been increasing. It is dif-
ficult for IoT products to hold all Blockchain data because of their stor-
age capacity. Therefore, they access Blockchain data via servers that have
Blockchain data. However, if a lot of IoT products access Blockchain net-
work via servers, server overloads will occur. Thus, it is useful to reduce
workloads and improve throughput. In this paper, we propose a caching
technique using a Field Programmable Gate Array-based (FPGA) Network
Interface Card (NIC) which possesses four 10Gigabit Ethernet (10GbE) in-
terfaces. The proposed system can reduce server overloads, because the
FPGA NIC instead of the server responds to requests from IoT products if
cache hits. We implemented the proposed hardware cache to achieve high
throughput on NetFPGA-10G board. We counted the number of requests
that the server or the FPGA NIC processed as an evaluation. As a result,
the throughput improved by on average 1.97 times when hitting the cache.
key words: Blockchain, IoT, FPGA, cache

1. Introduction

Blockchain is a distributed ledger which does not need an
administrator to manage data. It has been originally a fault-
tolerant digital payment system [1] using Peer-to-Peer (P2P)
network. Therefore, Blockchain has initially been applied to
financial business. For example, National Association of Se-
curities Dealers Automated Quotations (NASDAQ) has de-
veloped “NASDAQ LINQ” [2], which is a new undisclosed
stock distribution system to manage transactions effectively.
On the other hand, Blockchain is a fundamental concept to
manage data dispersively. Thus, Blockchain will be applied
to various industry in the near future.

Blockchain has many applications. In this paper, we
mainly target Bitcoin-based Blockchain. In other words, we
use Bitcoin as the example of Blockchain in the following
explanation. A transaction indicates transfer of a digital as-
set in terms of Blockchain. Transactions are collected in a
block. Blockchain is a chain of blocks, so Blockchain pos-
sesses all transactions. Blockchain size increases as time
passes. In fact, Blockchain size is over 120GB of all [3].

Manuscript received September 13, 2017.
Manuscript revised December 27, 2017.
Manuscript publicized February 2, 2018.
†The authors are with the Graduate School of Science and

Technology, Keio University, Yokohama-shi, 223–8522 Japan.
a) E-mail: yuma@arc.ics.keio.ac.jp

DOI: 10.1587/transinf.2017EDP7290

More and more people will possess Internet of Things
(IoT) products to access the Internet. They will access Block
network via IoT products. It is fact that the number of IoT
products [4] like smartphones has been growing. On the
other hand, IoT products generally do not have enough stor-
age capacity compared to servers, so it is difficult for them
to hold all Blockchain data. In order to solve the problem,
there is a system in which IoT products manage Blockchain
data via servers. Servers can possess all Blockchain data,
so they send a piece of data to IoT products. IoT products
verify whether the transaction has already been approved by
networking nodes using the data [5]. However, if a lot of
IoT products access servers at the same time, server work-
loads will significantly increase. Therefore, it is beneficial
to decrease server workloads.

In this paper, we propose a hardware cache system us-
ing a Field Programmable Gate Array-based (FPGA) Net-
work Interface Card (NIC) in order to decrease server work-
loads. We design and implement key-value stores (KVS)
hardware cache on a NetFPGA-10G board with four 10GbE
interfaces. The FPGA NIC instead of a server responds to
requests from IoT products if cache hits. Therefore, the sys-
tem can reduce server application latency and network la-
tency. We evaluate throughput both when the cache hits and
misses. As the result of evaluation, throughput improved by
on average 1.97 times when hitting cache∗.

Contributions of this paper are listed below.

• The proposed cache system can accelerate Blockchain
applications even if it is accessed from a large number
of IoT products.
• The proposed cache system reduces latency by 3.22

times and improves throughput by 1.97 times of a
server.
• The proposed cache system can be used in Blockchain

applications without modifying the protocol.

The rest of this paper is organized as follows. Sec-
tion 2 explains Blockchain. Section 3 introduces previous
work about FPGA accelerators and issues of Blockchain.
Section 4 illustrates our hardware cache using FPGA NIC.
Section 5 evaluates throughput. Section 6 concludes this pa-
per.

∗This paper is an extended version of our conference paper [6]
by revising the description and adding new results.

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers



SAKAKIBARA et al.: A HARDWARE-BASED CACHING SYSTEM ON FPGA NIC FOR BLOCKCHAIN
1351

Fig. 1 Structure of Blockchain

Table 1 Data size of fields in block header

Field Size

Previous Block Header Hash 32 Bytes
Timestamp 4 Bytes
Merkle Root 32 Bytes

2. Blockchain

Blockchain has unique features for IoT products. This sec-
tion shows a system and features of Blockchain through data
structure, Merkle Tree and nodes of Blockchain.

2.1 System

Any users can create a transaction with their digital signa-
tures. Transactions are collected in a transaction pool. A
node produces a block by gathering transactions at the in-
terval of about 10 minutes with a lot of hash computation.
It broadcasts the new block to the network and other net-
working nodes verify the block by computing hash of the
block. If more than half nodes approve the block, it will
be connected to Blockchain. The transaction becomes valid
only when it is verified by network nodes and be part of
Blockchain.

2.2 Data Structure

Figure 1 shows structure of Blockchain. Blockchain is a list
of blocks, each of which is composed of a block header and
a list of transactions [7]. The block header is made of three
sets of block metadata. First, “Previous Block Header Hash”
connects the block to the previous block in the Blockchain.
Second, “Timestamp” is related data to the mining compe-
tition. Third, “Merkle Root” is a data structure used to ef-
ficiently summarize all transactions in the block. Table 1
shows data size of each field in a block header.

A transaction shows transfer of a digital asset from
senders to recipients. Figure 2 shows simple structure of
a transaction. In this paper, we simplify structure of trans-
action without loss of generality, because it includes essen-
tial data. A transaction is made of four sets of metadata,
“TXID”, “Timestamp”, “INPUT” and “OUTPUT”. “TXID”
is Transaction ID which identifies the transaction. “Times-
tamp” indicates when a transaction is generated. “IN-
PUT” includes “Previous Tx Hash” and “scriptSig” to re-
fer to a previous transaction, which proves existence of as-
set. “OUTPUT” includes “Amount” and “scriptPubKey” to

Fig. 2 Simple structure of transaction

Table 2 Data size of fields in transaction

Field Size

TXID 32 Bytes
Timestamp 4 Bytes

INPUT
Previous Tx Hash 32 Bytes
scriptSig Variable Length

OUTPUT
Amount 8 Bytes
scriptPubKey Variable Length

Fig. 3 Structure of merkle tree

transfer asset to a recipient. Table 2 shows data size of each
field in a transaction.

2.3 Merkle Tree

It is inefficient to use all transactions in a block when veri-
fying whether a transaction has already been approved by
networking nodes. Accordingly, there is a data structure
called Merkle Tree to verify the transaction efficiently. Fig-
ure 3 shows the structure of Merkle Tree. Merkle Tree is a
binary hash tree that summarizes transactions of the block.
Merkle Tree is produced by recursively connecting hashed
value pairs of transactions until there is only one hash. In
Fig. 3, transactions are expressed as Tx A, Tx B, Tx C, Tx
D and a hashed value of Tx A is expressed as HA. The root
of Merkle Tree is called Merkle Root, which is expressed as
HABCD. A hashed value never changes unless a transaction is
tampered, so Merkle Root is used for verifying transactions.
Even if there are thousands of transactions in a block, the
size of Merkle Root is always 32 Bytes as same as a hashed
value of a transaction. Therefore, Blockchain can save total



1352
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.5 MAY 2018

Fig. 4 Producing merkle path

data size when verifying transactions.
A node, such as an IoT product, can prove whether a

transaction is included in a block by using a part of Merkle
Tree without possessing all transactions. To be more spe-
cific, the node can prove using hashed values of 32log2N
Bytes if N transactions are included in a block. These
hashed values, which connect the specific transaction with
Merkle Root are called Merkle Path. For example, a node
proves that a transaction Tx D is included in a block by us-
ing Merkle Path in Fig. 4. Merkle Path consists of the three
hashed-values HC , HAB and HEFGH . The broken line indi-
cates Merkle Path of the transaction Tx D. There are only
three hashed-values of 3 × 32 = 96 Bytes are required al-
though there are eight transactions in the block, which are
8 × 32 = 256 Bytes. Thus, Merkle Tree enables a node
to prove efficiently whether a transaction is included in the
block.

2.4 Types of Nodes

Blockchain is managed by Peer-to-Peer network. IoT prod-
ucts are unable to hold all transactions even though all nodes
are ideally equal in the network. Therefore, nodes are clas-
sified depending on their functionality. Functions are shown
below.

• Wallet: a function of managing payment
• Miner: a funcntion of generating blocks by calculating

hashes
• Blockchain Database: a function of managing all the

transactions
• Routing: a function of participating in the network

A node which has all functions above is called a Full node.
Full nodes possess all transactions, so they can verify trans-
actions without any help of other nodes, but it is required for
them to have substantial computational resources. On the
other hand, there is a node, such as an IoT product, that does
not have rich computational resources called a Simplified
Payment Verification (SPV) node [8]. An SPV node pos-
sesses a block header and verifies transactions using Merkle
Tree and Merkle Path. The chain of blocks, without transac-
tions, is 1,000 times smaller than the full Blockchain. Thus,
IoT products such as smartphones, tablets and embedded

Fig. 5 Verification of transaction on SPV node

systems can participate in Blockchain network.

2.5 Verification of Transaction on SPV Node

SPV nodes must verify that a transaction is valid to provide
any kind of service. Figure 5 shows verification of a trans-
action on an SPV node with Merkle Tree. An SPV node
compares Merkle Root made by Merkle Path from a Full
node with Merkle Roots in block headers to prove that the
transaction has already been a part of Blockchain. The SPV
node verifies the transaction in accordance with the follow-
ing three steps.

Step 1: Synchronize block headers

An SPV Node receives block headers from a Full node as
soon as possible, so the SPV node can extract Merkle Roots
from block headers (i.e. “Synchronize” in Fig. 5).

Step 2: Acquire Merkle Path

The SPV node sends a sender address to the Full node (i.e.
“Get Request” in Fig. 5). The Full node searches Blockchain
for the transaction based on the sender address. Then, it
makes Merkle Path corresponding to the transaction. After
that, the Full node sends Merkle Path to the SPV node (i.e.
“Get Result” in Fig. 5).

Step 3: Make and compare the Merkle Root

The SPV node has the transaction hash. Therefore, it can
make Merkle Root by the transaction hash and Merkle Path
receiving from the Full node. Then, it compares Merkle
Root made by the SPV node with Merkle Roots in block
headers (i.e. “Compare” in Fig. 5).

If one of Merkle Roots in block headers is identical
to Merkle Root made by the SPV node, the transaction has
already been approved. Therefore, it can provide service
to customers. Otherwise, the transaction has not yet been
approved, so it requests again.

3. Related Work

This section introduces previous work that is related to hard-
ware caching system using FPGA NIC and Blockchain.



SAKAKIBARA et al.: A HARDWARE-BASED CACHING SYSTEM ON FPGA NIC FOR BLOCKCHAIN
1353

3.1 Hardware Caching for Memcached

There are several pieces of previous studies to achieve high
throughput using KVS caching system implemented on FP-
GAs. Memcached is a distributed in-memory KVS that im-
proves response time of web servers by caching requested
data on DRAMs in distributed servers. FPGA appliance
has been proposed in order to improve energy efficiency of
memcached. As shown in [9], they proposed the design of
memcached architecture implemented on FPGAs to achieve
10Gbps line rate processing. In [10], they proposed that the
software memcached running on the host CPU by caching
data and some operations at the FPGA NIC mounted on the
server to improve latency. In addition, FPGAs can be ap-
plied to NoSQL databases. In [11], they proposed a multi-
level NoSQL cache architecture that utilized both the hard-
ware cache of FPGA and software cache implemented in
OS kernel. These studies showed the hardware cache using
FPGA is efficient and effective to improve system perfor-
mance.

3.2 Applications of Blockchain

Blockchain, a distributed ledger, achieved pseudonymous
online payment, cheap remittance and digital asset exchange
without an enormous central system. On the other hand,
Blockchain has scalability limits that trade-off between
throughput and latency. The performance of Blockchain
protocols is restricted by two parameters, block size and
block interval. Increasing block size improves through-
put, but the bigger blocks take longer to spread in the net-
work. Therefore, they proposed Bitcoin-NG [12], a scalable
Blockchain protocol. The latency of Bitcoin-NG is limited
only by the propagation delay of the network.

Originally, Blockchain has been a core technology of
cryptocurrency. However, Blockchain is a fundamental con-
cept that can be applied to other industry. A novel dis-
tributed application platform based on Blockchain is pro-
posed these days. Ethereum [13], a transaction-based state
machine, is proposed. Ethereum is a project which pro-
vides a trustful object messaging compute framework to end
developers. BigchainDB [14], which combines the bene-
fits of distributed databases and Blockchain, is proposed.
BigchainDB is a decentralized database with Blockchain
characteristics: decentralized control, immutability and cre-
ation or movement of digital assets. BigchainDB improved
throughput of Blockchain by limiting public participation.

3.3 Our Contributions

Blockchain achieved digital asset exchange without a
central system. However, compared to other systems,
Blockchain protocol limited scalability and throughput. To
make matters worse, increasing the number of IoT products
will cause low throughput and high latency between a server
and IoT products. In order to solve the problem, previous

studies such as [12], [14] attempted to accelerate write per-
formance of Blockchain applications by designing new pro-
tocols. However, in IoT era, read performance will be im-
portant as same as write one, because access from IoT prod-
ucts will increase. Our proposed hardware cache system can
improve read performance of Blockchain applications with-
out modifying protocol. Therefore, developers can apply
our method and previous ones to Blockchain applications at
the same time.

In addition, FPGAs were used for the hardware caching
system with key-value stores in previous studies such as [10]
and [11]. These systems were general, so their designs were
not specific to Blockchain applications connecting with SPV
nodes such as IoT products. On the other hand, we mainly
focus on it. More concretely, Merkle Tree is inherent in
Blockchain in order to make it easy to communicate with
IoT products, so we considered caching Merkle Root. To
sum up, we propose KVS hardware cache system on FPGA
NIC to improve Blockchain system efficiently and effec-
tively for when a lot of IoT products access simultaneously.

4. Hardware Cache Architecture

In this paper, we designed and implemented KVS hardware
cache on the FPGA NIC. We show an overview of proposed
KVS hardware cache architecture and then implementation
of the architecture.

4.1 Design

In Sect. 2, we introduced types of nodes, an SPV node and a
Full node for IoT products. We mainly focus on accelerating
Blockchain connecting with IoT products, but the proposed
system can be used more generally. Therefore, in the fol-
lowing, we use a term “client” as a node which receives a
part of Blockchain data to verify transactions, “server” as a
node which has Full Blockchain and “host” as composition
of a server and an FPGA NIC. Please note that Blockchain
is append-only, so consistency between Full Blockchain and
cached data is maintained in the system.

4.1.1 Overview of Proposed System

Figure 6 shows behavior of the proposed KVS hardware
cache system. The broken arrow indicates behavior when
cache misses while the bold arrow indicates behavior of
when cache hits. A client requests a host to get a required
data (i.e. “Get” in Fig. 6). If cache hits, an FPGA NIC
replies the data (i.e. “Cached Result” in Fig. 6) to the client.
If cache misses, the request from the client is forwarded to
the server (i.e. “Forward” in Fig. 6). After that, the server
replies the data to the client (i.e. “Get Result” in Fig. 6) and
saves data on the FPGA NIC (i.e. “Set” in Fig. 6). We will
explain detailed cache behavior both when cache misses and
cache hits below.



1354
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.5 MAY 2018

Fig. 6 Proposed hardware cache system

Fig. 7 Behavior when cache misses

4.1.2 Cache Miss Behavior

Figure 7 illustrates behavior of cache system when cache
misses. A client sends a key to a host to acquire a value. An
FPGA NIC in a host receives the key at first and accesses on-
board DRAM via DRAM controller. The value has not been
cached on DRAM at the first time, so the FPGA NIC for-
wards the key to a server, which possesses Full Blockchain.
Then, the server searches Blockchain for the value based on
the key and it replies the value to the client. After that, the
server accesses on-board DRAM of the FPGA NIC to cache
key-value pair on it.

4.1.3 Cache Hit Behavior

Figure 8 illustrates behavior of cache system when cache
hits. The client sends a key to a host, and the FPGA NIC
receives the key and accesses on-board DRAM based on the
key as same as when cache misses. It has cached the value
at this time, so the FPGA NIC replies the value to the client
without forwarding to the server. In this case, the workload
of the server decreases, because the server does not process
the request.

4.2 Hardware Implementation

We introduced an overview design of the proposed system,
so we will explain its implementation on an FPGA NIC be-
low. The proposed KVS cache system is built on Reduced

Fig. 8 Behavior when cache hits

Fig. 9 Overview of hardware implementation

Latency Dynamic Random Access Memory (RLDRAM) of
the FPGA NIC, which is a type of DRAM. It is possible
to implement the system on a typical DRAM in the future.
The system is flexible, because data to be used as a key and
a value can be selected depending on use cases. In this pa-
per, we implemented an example of use cases. In Sect. 2,
we showed simple structure of block and transaction. TXID
identifies the transaction and Merkle Root is a summary of
transactions in a block. Therefore, we assume the case when
a client sends TXID to a host and receives Merkle Root to
know whether the transaction is valid. In this case, the key is
TXID and the value is Merkle Root of the block, which con-
tains the transaction. The transport-layer protocol between
the client and the server is User Datagram Protocol (UDP).
We implemented the hardware cache based on the direct-
mapped method. Line replacement occurs when same index
is transferred to the same entry.

Figure 9 shows an overview of implementation. The
FPGA NIC has three states, Key Extraction, Access on-
board DRAM and Packet Forwarding, to manage the sys-
tem.

4.2.1 Key Extraction

We assume that all UDP packets whose destination port is
pre-specified port number have requested keys. We call
these packets as requesting packets. The FPGA NIC extracts
the payload, which is TXID, from the requesting packet and
a lower 22-bit of TXID. It also operates DRAM controller to
access on-board DRAM based on the key. Figure 10 shows
request packet format. The length of requesting packets is



SAKAKIBARA et al.: A HARDWARE-BASED CACHING SYSTEM ON FPGA NIC FOR BLOCKCHAIN
1355

Fig. 10 Request packet format

Fig. 11 Cache layout

74 Bytes, because header length is 42 Bytes and payload,
which is TXID, is 32 Bytes. The AXI bus width is 32 Bytes,
so the FPGA can extract 32 Bytes in a cycle. Therefore, it
takes three cycles to extract payload from the packet whose
size is 74 Bytes in this paper. If the FPGA NIC receives
packets other than requesting packets, they are forwarded to
the server.

4.2.2 Access On-Board DRAM

Figure 11 shows proposed cache data layout. According
to NetFPGA-10G team [15], there are four RLDRAMs and
their capacity is 288 MBytes in total. However, only 256
MBytes can be accessed from the board. More specifi-
cally, there are two memory controllers on the board, and
each memory control is in charge of 223 × 128 bits = 128
MBytes. In Fig. 11, “Tag” is marked as red while “Value”
is marked as blue. A single cache line including “Tag” and
“Value” uses up to 512 bits. Therefore, we fixed “Index” is a
lower 22-bit of TXID and “Tag” is a higher 234-bit of TXID.
“Valid” shows valid flags to judge whether cache hits or not.
“Valid” is recorded in other registers, which correspond to
“Index”. “Value” is Merkle Root, which is 256 bits.

DRAM controller accesses on-board DRAM to judge
whether cache hits or misses when it is received a request-
ing packet. We will explain how DRAM controller judges
whether cache hits or misses below. It turns valid flags of
on-board DRAM into disable at first. A valid flag is turned
into enabled when the server saves key-value pair on the
cache (i.e. “Set” in Fig. 6). Tag is used to check whether
cached data is valid. If Tag is equal to a 234-bit value gener-
ated from the requesting packet and the valid flag is enable,
DRAM controller judges as cache hits. Otherwise, it judges
as cache misses.

Fig. 12 Reply packet format

The FPGA NIC needs to stop receiving new packets
while accessing on-board DRAM, because the access la-
tency is larger than the processing speed of FPGA. The
FPGA NIC waits until on-board DRAM can be accessed.
Advanced Extensible Interface (AXI) of the FPGA NIC pro-
cesses 32 Bytes in a cycle. Therefore, it takes more than
a single cycle to acquire cached data. DRAM controller
also accesses on-board DRAM when key-value pair which
is provided by the server is cached.

4.2.3 Packet Forwarding

The FPGA NIC decides the destination to send the packet
depending on whether cache hits or misses. If cache misses,
the requesting packet from the client is forwarded to the
server. On the other hand, if cache hits, the FPGA NIC
makes a new UDP packet whose payload is Merkle Root
to reply to the client by modifying the requesting packet.
There are mainly two parts of the packet to be modified.
First, the source MAC and IP addresses is switched for the
destination MAC and IP addresses. Second, the payload is
changed from TXID to Merkle Root. Figure 12 shows re-
quest packet format. The length of replying packets is 74
Bytes, because header length is 42 Bytes and payload, which
is Merkle Root, is 32 Bytes.

4.2.4 Cache Organization

The hardware cache system is implemented based on the
direct-mapped method, because it can mitigate cache com-
plexity. Comparators in a set associative cache are required
in response to the associativity, which causes performance
degradation although it can reduce the conflict miss. We
compared direct-mapped cache with 2 and 4-set associative
cache memories by simulation from a view point of hit rate
and number of tag comparisons to show the direct-mapped
cache is enough. We used input data generated from bit-
coind [16] to compare cache organizations. Bitcoind is a
program which implements the Bitcoin protocol for remote
procedure call. Figure 13 shows hash collision rates in dif-
ferent cache memories. We measured it by sending 10000,
50000 and 250000 keys. These keys are uniformly dis-
tributed, because they are hashed values of transations. Ac-
cording to Fig. 13, a hash collision rate of a directed-mapped
cache is less than 1% when the number of keys is 250000,
so negative impact of hash collision due to direct-mapped
cache is limited. On the other hand, set-associative cache
increases the design complexity. Therefore, in this paper,
we adopted a direct-mapped method as cache organization.



1356
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.5 MAY 2018

Fig. 13 Comparison of hash collision rates between caches

Fig. 14 Overview of handling packet on software implementation with-
out cache

4.3 Software Implementation

We implemented two software application programs writ-
ten by C language with Socket APIs. We adopted UDP as
the transport layer. These programs were run on machines
shown in Table 4. Main functions of software application
programs are receiving packets from the FPGA NIC and re-
trieving corresponding value from prefixed Blockchain data
on memory. Difference between two software application
programs is whether implementing a software cache in or-
der to measure throughput and latency caused by passing
network and application processing. The software cache is
implemented with a direct-mapped method and line replace-
ment occurs when same index is transferred to the same
entry. Therefore, basic structure of the software cache is
same as the proposed hardware cache. Figure 14 shows
an overview of handling packet on software implementa-
tion without cache while Figure 15 shows an overview of
handling packet on software implementation with cache.
The basic concept of handling packets on software imple-
mentations are same. Both software applications extract a
key from the requesting packet. Then, a packet handler in
a software application program without cache retrieves re-
quested Merkle Root from the memory as shown in Fig. 14
and passes it to the FPGA NIC. On the other hand, a packet

Fig. 15 Overview of handling packet on software implementation with
cache

Table 3 Specification of NetFPGA-10G

FPGA Logic Xilinx Virtex-5 TX240T (160MHz)
Networking Ports Four SFP+ connectors (10Gb × 4)
DRAM RLDRAM II (288MBytes)
Host Interface PCI Express Gen1 × 8

handler in another software application program acquires
cached Merkle Root from the software cache as shown in
Fig. 15 and passes it to the FPGA NIC.

5. Evaluations

We evaluated the proposed KVS cache system by measuring
throughput. The proposed cache is flexible, because data to
be used as a key and a value can be changed depending on
applications. In this paper, as an example of using cache
system, we cached TXID as a key and Merkle Root as a
value.

5.1 Evaluation Environment

We used an FPGA NIC, a client and a server machine to
evaluate the system.

5.1.1 FPGA NIC

We employed NetFPGA-10G board, which possesses four
10GbE interfaces and Virtex-5 FPGA, as an FPGA-based
programmable NIC. We used a single 10GbE link out of
four links. Table 3 shows the specification of the NetFPGA-
10G board. We implemented the proposed KVS cache with
Verilog HDL based on RLDRAM Stream provided by the
NetFPGA-10G project [17] and 10GbE MAC with IP core
provided by Xilinx and communication function. We also
used Xilinx ISE System Edition 13.4 for logic synthesis and
place and route.

5.1.2 Client and Server

Table 4 illustrates the specification of a client and a server
machine. In this paper, we employed a single client machine
listed in Table 4 in order to emulate significantly huge num-
bers of IoT products. We implemented original application



SAKAKIBARA et al.: A HARDWARE-BASED CACHING SYSTEM ON FPGA NIC FOR BLOCKCHAIN
1357

Table 4 Specification of machines
Client Server

CPU Intel Core i5-4460 Intel Core i5-3470S
Cores 4 4
Frequency 3.20GHz 2.90GHz
Memory 8GB 4GB
OS Ubuntu 16.04 CentOS 6.8
NIC Mellanox ConnectX-3 EN 10GbE NIC NetFPGA-10G Reference 10GbE NIC

Fig. 16 Throughput when number of transactions in block changes

programs written in C language for the client and the server.
We counted the number of packets from the client ma-

chine that the FPGA NIC or the server could process and
measured throughput as “requests per second (rps)”. We
used the same NetFPGA-10G board both when cache hits
and misses. There are mainly one preliminary evaluation,
throughput evaluations and area evaluation.

5.2 Preliminary Evaluation

The number of transactions in a block has been increasing.
In fact, Blockchain Luxembourg [3] shows that over 1,700
transactions are included in a block on average. Therefore,
we did preliminary evaluation beforehand in order to in-
dicate that the total number of transactions rather than the
number of transactions in a block affects throughput. We
evaluated throughput when the number of transactions in a
block was changed to 1024, 2048 and 4096. We search re-
quested Merkle Root with a tree-based indexing. Figure 16
shows the relationship between the number of transactions
and throughput.

Figure 16 indicates that the total number of transactions
affects throughput rather than the number of transactions in a
block. Therefore, we can fix that the number of transactions
in a block is 2048 in other evaluations.

We argued software implementation in Sect. 4.3. Based
on the measurement results, the number of cores used for
software implementation is one and its utilization is 100%.

5.3 Throughput Evaluations

Figure 17 shows an overview of evaluation. We evalu-
ated throughput while changing the number of blocks in

Fig. 17 Overview of four approaches

four different approaches: Software Approach, Software
Cache Approach, Hardware Cache Approach and Hard-
ware Cache Approach with NetFPGA Open Source Net-
work Tester (OSNT) [18]. Workloads with the same key
distribution condition are applied to four approaches.

1. Software Approach (i.e. “SW” in Fig. 17)
The application program on the server processes re-
questing packets from client’s application program.
The application program searches requested Merkle
Root with a tree-based indexing.

2. Software Cache Approach (i.e. “SW Cache” in Fig. 17)
The software cache on the server processes requesting
packets from client’s application program. The basic
structure of software cache is same as the proposed
hardware cache, because both cache memories are im-
plemented with a direct-mapped method and line re-
placement occurs when same index is transferred to the
same entry.

3. Hardware Cache Approach (i.e. “HW” in Fig. 17)
The proposed KVS hardware cache on the FPGA NIC
processes requesting packets from client’s application
program. The basic structure of hardware cache is
same as that of the software cache. The relation be-
tween throughput and hit rate will argue later.

4. Hardware Cache Approach with NetFPGA OSNT (i.e.
“HW Max” in Fig. 17)
The proposed KVS hardware cache on the FPGA NIC
processes requesting packets from client’s NetFPGA-
10G with an OSNT hardware-based packet sender.

The proposed KVS cache system can reduce server ap-
plication latency and network latency when cache hits. We
also employed NetFPGA OSNT as a packet sender to fully
utilize 10GbE bandwidth for only forth approach.

Figure 18 shows results of the four approaches. Four
observations by comparing the four approaches are de-
scribed below.

• Throughput improves by on average 1.07 times by
reducing server application latency, comparing “SW”
and “SW Cache”.
• Throughput improves by on average 1.84 times by re-

ducing network latency, comparing “SW Cache” and
“HW”.



1358
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.5 MAY 2018

Fig. 18 Throughput in four approaches

• Throughput improves by on average 1.97 times by
applying proposed KVS hardware cache, comparing
“SW” and “HW”.
• Throughput improves by at most 26.2 times under an

ideal environment, comparing “SW” and “HW Max”.

An ideal environment occurs when requesting packets
are constantly sent and they fully fill 10GbE bandwidth.

We evaluated throughput both when cache hit and
missed. However, throughput also changes depending on
hit rate of the hardware cache in reality. The packet replies
on the hit and miss performed simultaneously. Therefore,
we consider the relationship between hit rate of the cache
and throughput. We estimated throughput while hit rate
changed. Assuming that H is hit rate of the cache, TS W is
throughput when cache misses and THW is throughput when
cache hits, throughput T can be expressed as a linear equa-
tion below.

T =
THW − TS W

100
H + TS W (1)

TS W is measured throughput on average when the soft-
ware application program without cache processes request-
ing packets, which is derived from “SW” in Fig. 18. THW is
measured throughput on average when the proposed hard-
ware cache processes requesting packets, which is derived
from “HW” in Fig. 18.

We also measured throughput by changing hit rate of
the cache. Figure 19 shows estimated throughput and mea-
sured throughput. As the result, an error of throughput is at
most 10.4%.

5.4 Performance Model

We estimate performance model of the proposed method,
which shows what the limitation of the proposed method is.
There are two roofline models in Fig. 20: roofline with hard-
ware and software. We use throughput in Fig. 18 to estimate
roofline model with hardware and software. If applied work-
load increases, throughput also increases until it reaches the

Fig. 19 Throughput while hit rate of hardware cache changes

Fig. 20 Roofline model of proposed method

limitation of connection capacity. Performance of the pro-
posed method is limited by 10GbE connection between an
FPGA NIC and clients. Therefore, if the connection is fully
used, this is the limitation of the proposed method.

5.5 Latency Evaluations

This paper also proposed reducing server application la-
tency and network latency, so we measured round-trip la-
tency for four approaches. Latency includes network pass-
ing time for round-trip and system processing time. Please
note that the latency and network bandwidth of Hardware
Cache Approach and Hardware Cache Approach with NetF-
PGA OSNT is same, because the system of processing pack-
ets are same. Therefore, we describe “HW and HW MAX”
in Fig. 21. Figure 21 shows results of the four approaches.
Three observations by comparing the four approaches are
described below.

• Latency improves by on average 1.64 times by reduc-
ing server application latency, comparing “SW” and
“SW Cache”.
• Latency improves by on average 1.97 times by reduc-

ing network latency, comparing “SW Cache” and “HW



SAKAKIBARA et al.: A HARDWARE-BASED CACHING SYSTEM ON FPGA NIC FOR BLOCKCHAIN
1359

Fig. 21 Latency when number of transactions in block changes

and HW MAX”.
• Latency improves by on average 3.22 times by apply-

ing proposed KVS hardware cache, comparing “SW”
and “HW and HW MAX”.

5.6 Area Evaluation

Table 5 shows an area evaluation of NetFPGA-10G board.
Main hardware components actually implemented on FPGA
are Reference NIC, a DRAM controller for RLDRAM and
a hashing module to make addresses of RLDRAM. Accord-
ing to NetFPGA team [19], Reference NIC is mainly di-
vided into five modules: input interface, input arbiter, out-
put port lookup module, BRAM output queue and output
interface. Packets first enter input interface and the in-
put arbiter selects a packet from five input interfaces, four
from the 10GbE interface modules and one from a DMA
module, to the next stage. The output port lookup mod-
ule decides which port a packet goes out of. After that,
the packet is handed to the BRAM output queue until the
destination is determined. Finally, output interface emits
the packet to destination. Therefore, Reference NIC con-
sumes all the FPGA hardware resources shown in Table 5.
Function of a DRAM controller for RLDRAM is mainly de-
scribed in Sect. 4.2 “Hardware Implementation”. It controls
RLDRAM for processing requesting packets. It consumes
LUT, Memory, Slice Logic and Block RAM/FIFO to judge
hit or miss. The hashing module to make addresses of RL-
DRAM is related to a DRAM controller. It generates a 22-
bit hashed address of RLDRAM from a 256-bit TXID from
clients. Therefore, the component consumes LUT, Memory,
Slice Logic and Block RAM/FIFO. It indicates that utiliza-
tion of Look-Up Table (LUT) and Block RAM (BRAM) is
under 54%. The capacity of BRAM is 11,664 Kbits, so it
is not employed as the hardware cache in this paper. How-
ever, the processing speed of BRAM is faster than that of
RLDRAM. Therefore, as a future work, it is possible to ac-
celerate further using the rest of BRAM for an alternative
cache.

Table 5 Design summary

Number (Total) Utilization

LUT 44,250 (149,760) 29%
Memory 2,206 (39,360) 5%
Slice Logic 20,254 (37,440) 54%
IO 270 (680) 39%
Block RAM/FIFO 162 (324) 50%

Table 6 Power consumption

Power [W]

SW 86.0
SW Cache 84.3
HW and HW MAX 67.5

5.7 Power Consumption Evaluations

We measured power consumption due to the proposed sys-
tem. Table 6 shows the result of power consumption evalua-
tions. Power consumption decreases 18.5W by introducing
our proposed system, because the FPGA NIC processes re-
questing packets instead of a server. Software application
programs on a server consumes more power than the pro-
posed system on the FPGA NIC. Therefore, the proposed
system is beneficial from the view point of power consump-
tion.

6. Conclusions

The size of Blockchain, a distributed ledger, has been
increasing. However, IoT products cannot possess all
Blockchain data, so they access Blockchain via servers. If
a lot of IoT products access servers at the same time, server
workloads significantly increases. Therefore, in this paper,
we designed and implemented KVS hardware cache using
on-board DRAM of FPGA NIC in order to reduce server
workloads. If cache hits, the FPGA NIC responses instead
of the server. Thus, the server can reduce its workload and
throughput between the server and IoT products can also
be improved. We counted the number of packets that the
server or the FPGA NIC could process and measured ef-
fective throughput. The proposed KVS cache system can
reduce both server application latency and network latency.
As the result, throughput mainly improves by on average
1.97 times applying proposed hardware cache system. In
detail, reducing server application latency contributes on av-
erage 1.07 times throughput improvement while reducing
network latency contributes on average 1.84 times through-
put improvement. In reality, throughput depends on hit rate
of the hardware cache. Therefore, we also estimated and
measured throughput while changing hit rate. As the re-
sult, an error of throughput is at most 10.4%. Please note
that this is the first work to address the server bottleneck of
Blockchain which will be a crucial factor due to the increase
of IoT products in the near future.



1360
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.5 MAY 2018

Acknowledgements

The authors thank Mr. Yuta Tokusashi for technical discus-
sion.

References

[1] K. Saito and H. Yamada, “What’s So Different about Blockchain?
— Blockchain is a Probabilistic State Machine,” Proc. Distributed
Computing Systems Workshops (ICDCSW’16), pp.168–175, 2016.

[2] S. Underwood, “Blockchain beyond bitcoin,” Commun. ACM,
vol.59, no.11, pp.15–17, 2016.

[3] “BLOCKCHAIN info.” https://blockchain.info/ja/charts/
n-transactions-per-block

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A
Survey,” Computer Networks, vol.54, no.15, pp.2787–2805, 2010.

[5] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A.
Miller, A. Poelstra, J. Timon, and P. Wuille, “Enabling blockchain
innovations with pegged sidechains,” https://blockstream.com/
sidechains.pdf, 2014.

[6] Y. Sakakibara, K. Nakamura, and H. Matsutani, “An FPGA
NIC Based Hardware Caching for Blockchain,” Proc. Highly-
Efficient Accelerators and Reconfigurable Technologies
(HEART’17), pp.1–6, 2017.

[7] A.M. Antonopoulos, Mastering Bitcoin: Unlocking digital cryp-
tocurrencies, O’Reilly Media, Inc., 2014.

[8] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,”
http://bitcoin.org/bitcoin.pdf, 2008.

[9] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bar, and I. Zsolt,
“Achieving 10Gbps Line-rate Key-value Stores with FPGAs,” Proc.
USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud’13), 2013.

[10] E.S. Fukuda, H. Inoue, T. Takenaka, D. Kim, T. Sadahisa, T. Asai,
and M. Motomura, “Caching memcached at reconfigurable network
interface,” Proc. International Conference on Field Programmable
Logic and Applications (FPL’14), pp.1–6, 2014.

[11] Y. Tokusashi and H. Matsutani, “A Multilevel NOSQL Cache
Design Combining In-NIC and In-Kernel Caches,” Proc. High-
Performance Interconnects (HOTI’16), pp.60–67, 2016.

[12] I. Eyal, A. Efe Gencer, E. Gun Sirer, and R. van Renesse,
“Bitcoin-NG: A scalable blockchain protocol,” Proc. USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’16), pp.45–59, 2016.

[13] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger,” http://www.cryptopapers.net/papers/ethereum-
yellowpaper.pdf, 2014.

[14] T. McConaghy, R. Marques, A. Muller, D.D. Jonghe, T.T.
McConaghy, G. McMullen, R. Henderson, S. Bellomare, and A.
Granzotto, “BigchainDB: A Scalable Blockchain Database,” https://
www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf, 2016.

[15] “NetFPGA-10G Information.” http://netfpga.org/10G specs.html
[16] “bitcoind.” https://en.bitcoin.it/wiki/Bitcoind
[17] “The NetFPGA Project.” http://netfpga.org/
[18] “Open Source Network Tester.” https://github.com/NetFPGA/

OSNT-Public/wiki
[19] “NetFPGA 10G Reference NIC.” https://github.com/NetFPGA/

NetFPGA-public/wiki/NetFPGA-10G-Reference-NIC

Yuma Sakakibara is a Master’s student at
Keio University. His research interests include
Blockchain and FPGA-based systems. He re-
ceived a BE in computer science from Keio Uni-
versity in 2017.

Shin Morishima is a PhD student at Keio
University. His research interests include graph
database and GPU-based systems. He received
an ME in computer science from Keio Univer-
sity in 2016.

Kohei Nakamura is a Master’s student at
Keio University. His research interests include
Change Point Detection and FPGA-based sys-
tems. He received a BE in computer science
from Keio University in 2016.

Hiroki Matsutani is an associate profes-
sor in the Department of Information and Com-
puter Science at Keio University. His research
interests include computer architecture. He re-
ceived a PhD in engineering from Keio Univer-
sity in 2008. He is a member of IEICE, IPSJ,
and IEEE.

http://dx.doi.org/10.1109/icdcsw.2016.28
http://dx.doi.org/10.1145/2994581
https://blockchain.info/ja/charts/n-transactions-per-block
http://dx.doi.org/10.1016/j.comnet.2010.05.010
https://blockstream.com/sidechains.pdf
http://dx.doi.org/10.1145/3120895.3120897
http://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1109/fpl.2014.6927487
http://dx.doi.org/10.1109/hoti.2016.022
http://dx.doi.org/10.1007/978-3-319-70972-7_22
http://www.cryptopapers.net/papers/ethereum-yellowpaper.pdf
https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf
http://netfpga.org/10G_specs.html
https://en.bitcoin.it/wiki/Bitcoind
http://netfpga.org/
https://github.com/NetFPGA/OSNT-Public/wiki
https://github.com/NetFPGA/NetFPGA-public/wiki/NetFPGA-10G-Reference-NIC

