
Accelerating Blockchain Transfer System Using
FPGA-Based NIC

Yuma Sakakibara, Yuta Tokusashi, Shin Morishima, and Hiroki Matsutani
Dept. of Information and Computer Science, Keio University

3-14-1 Hiyoshi, Kohoku, Yokohama, Japan
Email: {yuma,tokusasi,morisima,matutani}@arc.ics.keio.ac.jp

Abstract—Blockchain is core technology for cryptocurrency
and it is possible to become fundamental platform for industry
and business. Especially, a blockchain-based digital asset transfer
system using Internet of Things (IoT) products has recently
been considered as a new practical platform, but the protocol
limits performance. Previous research has improved perfor-
mance by proposing new protocols, but further improvement
is necessary for dealing with increasing transactions via IoT
products. Therefore, we propose an in-Network Interface Card
(in-NIC) processing approach using a Field Programmable Gate
Array (FPGA) to improve performance of a blockchain-based
transfer system. To be more concrete, we design and implement
a prototype NIC with a key-value data store written in a P4
language on the FPGA that has four 10Gigabit Ethernet (10GbE)
network interfaces. The prototype system supports frequently-
used commands (CREATE, ISSUE, TRANSFER and REFER) for
transferring digital asset. It reduces time for processing a kernel
network protocol stack and accessing the data store. In fact,
we measured throughput and latency of our prototype system
compared to those of a blockchain software application. As a
result, we found that our solution is able to obtain throughput
6.04 times higher on average and latency 15.4 times lower on
average for all typical blockchain operations.

Index Terms—Blockchain, FPGA, Key-Value Store, P4

I. INTRODUCTION

Blockchain is one of the most noteworthy technologies in
recent years. It is a fault-tolerant distributed ledger system us-
ing Peer-to-Peer (P2P) network. It has been a core technology
for cryptocurrency such as bitcoin [1]. Currently, it provides a
digital asset transfer system, which will be applied to various
industries other than a financial application [2].

Transactions are a type of data structure that encode trans-
ferring of a value between participant nodes in a blockchain-
based network system [3]. A specific node in the network
aggregates transactions to create a block. The new block
is validated and approved by other participating nodes. Af-
terwords, it is finally appended to the blockchain. Once a
transaction is written to a blockchain, in principle, it will not
be rewritten. The number of transactions using blockchain has
been increasing significantly, because it is cheaper and faster
than systems provided by traditional financial institutions.
Actually, the total size of all block headers and transactions
of bitcoin increase exponentially [4]. Furthermore, Internet of
Things (IoT) products make users easy to access blockchain,
so network traffic in blockchain will be congested due to
increasing transaction volume via IoT products. On the other

hand, a bitcoin-derived blockchain protocol has a limited
throughput and latency [5]. Therefore, various platforms with
new protocols have been proposed such as Ethereum and
Hyperledger to improve them. However, these platforms are
still not competitive with current database systems in term
of throughput and latency in high workload scenarios [6].
Conventional research has been conducted based on protocol
improvement, but further improvement is necessary to cope
with increasing transaction volume. Therefore, it is important
to process several transactions out of blockchain and final set-
tlement of them is executed on blockchain, which is called an
off-chain processing. Performance of an off-chain processing
is not limited by a blockchain protocol, so we consider that
throughput and latency of the off-chain processing will be
required as same as those of a database system. In other words,
we aim at 100,000 transactions per second (tps) as a required
throughput and 7 micro seconds as a required latency.

In order to achieve high performance, we propose an in-
Network Interface Card (in-NIC) processing approach on a
Field Programmable Gate Array (FPGA) connected to a host
machine to improve throughput and latency further. To be more
specific, we design and implement a prototype system, which
includes a key-value data store and supports fundamental
commands for transferring a digital asset on an NetFPGA-
SUME board, possessing four 10Gigabit Ethernet (10GbE)
interfaces and an FPGA device. Hereinafter, the FPGA with
NIC function is called an FPGA NIC. Actually, packet pro-
cessing and data manipulation are executed inside the FPGA
NIC without any software processing, so the prototype system
can reduce processing time for a kernel network protocol
stack and accessing time for the data store. We measured
performance of the prototype system with four digital asset
transfer commands and achieved the required throughput and
latency. Our contributions are summarized as follows.

• We propose an in-NIC approach on the FPGA for improv-
ing throughput and latency of an off-chain processing out
of blockchain.

• We design and implement a prototype system with a key-
value data store, which supports four fundamental com-
mands for transferring a digital asset on the NetFPGA-
SUME board.

• An actual machine evaluation and simulation of the
prototype system demonstrate the performance benefits.



The rest of this paper is organized as follows. Section II
introduces related work about blockchain and FPGA and
GPU-based accelerators. Section III illustrates a proposed
blockchain-based transfer system using an FPGA NIC. Section
IV describes implementation of the prototype system on
the NetFPGA-SUME board. Section V shows experimental
results. Section VI concludes this paper.

II. RELATED WORK

Various approaches have been studied in order to improve
performance of blockchain by modifying protocols. In terms
of protocols, we classify types of blockchain for better under-
standing our target. Also, various approaches using FPGAs and
GPUs have been studied for accelerating conventional systems.
In this paper, we improve performance of a blockchain-based
asset transfer system using an FPGA.

A. Blockchain Protocols

According to [7], in terms of fundamental properties,
cost efficiency, performance and flexibility, blockchain can
be classified into three types: public, private and consor-
tium/community blockchain. Fundamental properties consist
of five properties (immutability, non-repudiation, integrity,
transparency, and equal rights). If a transaction is committed
to a blockchain, data will eventually be immutable. A crypto-
graphic technology provides a transaction for non-repudiation
of the stored data and data integrity. Data transparency is
provided by the public access. Participants have the equal
ability to access and process blockchain, because it offers
equal rights.

Public blockchain is adopted by most cryptocurrencies such
as bitcoin, because it can be accessed by anyone on the Inter-
net. It supports the fundamental properties, but sacrifices cost
efficiency, performance and flexibility, so a public blockchain
is not suited to business and industrial uses. On the other hand,
generally, private blockchain can offer better cost efficiency
and performance than public blockchain, because it limits
members. A protocol of private blockchain does not fully
support fundamental properties, so it is more vulnerable to
malicious attacks than public blockchain. Usually, a trade-
off exists between fundamental properties and performance.
Even though write permission is held by a single organiza-
tion, participant nodes within network must approve permis-
sion management. Consortium/community blockchain is used
across multiple organizations. It mixes up features of public
and private blockchain.

B. Blockchain Based Platforms

Most blockchain platforms have been implemented based on
a public blockchain protocol, but currently some platforms for
business use are built based on a private blockchain protocol.
Ethereum and Hyperledger are major blockchain platforms for
business use.

1) Ethereum: Ethereum [8] is an open-source public
blockchain platform. It extends a bitcoin platform for business
use by adding smart contract functionality which is a type
of custom business logic. Generally, anyone can access an
Ethereum network, but they can configure settings to be a
private network. Participants manipulate data by applying
contract codes. Therefore, they can transfer not only cryp-
tocurrency but also develop their original assets by contract
codes.

2) Hyperledger: Hyperledger is an open-source private
blockchain platform developed by the Linux Foundation. Hy-
perledger Fabric [9] is one of the projects. It is designed to
use for a cross-industry blockchain technologies, so it also
offers smart contract functionality. Only permitted members
can join the network, so it can attain better performance than
Ethereum. Hyperledger Fabric has a world state [10], which
holds the current values of a set of ledger states expressed in
key-value pairs. Participants manipulate the state by executing
a smart contract program called a chaincode. In other words,
they can create their own original digital assets and transfer
them by chaincodes.

A performance analysis of Ethereum and Hyperledger Fab-
ric is conducted in [6] by constructing a cash transfer applica-
tion. They implemented three functions (CreateAccount, Issue-
Money and TransferMoney) to evaluate throughput and latency
of the two platforms. They aimed for establishing a method-
ology for a blockchain-based platform and helping developers
when adopting blockchain technology in their current systems.
As the result, Hyperledger Fabric shows higher throughput
and lower latency than Ethereum, but these platforms show an
inferior performance to current database systems. Therefore, it
is important to accelerate an off-chain processing in order to
improve performance of current blockchain-based platforms.

C. FPGA and GPU Based Accelerators

FPGAs and GPUs are often applied to accelerate conven-
tional systems and an application domain is varied. A key-
value store (KVS) is often used for data management to
achieve the high performance. Therefore, FPGAs and GPUs
are suited to accelerate an off-chain processing. Previous work
has proposed methods to accelerate a KVS by using FPGAs
efficiently.

Memcached [11] is a general-purpose distributed mem-
ory cache system, which can accelerate response time of a
website using a database by storing key-value pairs (KVPs)
in distributed memories on servers. In [12], they employed
FPGAs to accelerate memcached. They implemented main
functionalities of memcached on an FPGA by integrating
network, memory and compute interfaces. As the result, they
improved energy efficiency compared to standard servers.
In [13], they proposed the design of another memcached
architecture implemented on FPGAs. They fully pipelined pro-
cessing architecture, integrated network and memory interface
by directly implementing on FPGAs and adopted modular
design through standardized interfaces. As the result, they
achieved 10Gbps line-rate KVS with FPGAs for all packet



sizes and they also improved latency and power consumption.
In [14], they proposed a method for a low latency hardware
memcached system with less memory. They stored the subset
of data and several frequently-used commands at the NIC
equipped with an FPGA. The NIC accesses Dynamic Random
Access Memory (DRAM) to retrieve data when it receives a
requesting packet from a client. If desired data is not cached
in the DRAM, the NIC forwards the request to the host CPU
running memcached. Consequently, they improved the latency
of memcached.

FPGAs are also utilized for accelerating databases. Tradi-
tional database management system (DBMS) consumes the
CPU resources for mission-critical transactional tasks. There-
fore, in [15], they proposed a novel method of engine for
database operations using an FPGA by offloading critical
query operations using the FPGA. They implemented a proto-
type system using an FPGA and integrated it into commercial
DBMS. As the result, they saved CPU resources and im-
proved performance. In [16], we proposed a multilevel Not
Only SQL (NOSQL) cache architecture. We used an FPGA-
based hardware cache to complement an in-kernel software
cache. We implemented a prototype system of the multilevel
NOSQL cache on the NetFPGA-10G board and Linux Netfilter
framework. As the result, we reduced the cache miss ratio and
improved throughput.

Recently, a KVS is used for managing participant nodes of
blockchain efficiently. In [17], we accelerated a blockchain-
based system using an FPGA with a NIC function by caching
merkle trees. We designed and implemented a cache on an
FPGA-10G board in order to reduce servers’ workloads and
improve performance of the blockchain-based system. As the
result, we improved performance. In [18], we also accelerated
a blockchain-based system when searching full nodes using
Graphics Processing Units (GPUs). We previously focused
on accelerating functions of full nodes in a blockchain-based
system by using FPGAs and GPUs. In this paper, we design
and implement a KVS on an FPGA for accelerating an off-
chain processing of a blockchain-based transfer system.

III. PROPOSED BLOCKCHAIN-BASED TRANSFER SYSTEM

We simply design the prototype system for transferring a
digital asset to achieve high performance. In other words,
we integrate networking, computing and memory resources in
an FPGA to accelerate a blockchain-based transfer system.
Fig. 1 illustrates an overview of the proposed system. An
FPGA NIC is connected to a host CPU by PCI Express (PCIe)
to process a transaction packet complementarily. We design
and implement core modules and a key-value data store in
the FPGA NIC. Core modules process transaction packets
from clients via network and issue one of the four digital
asset transfer commands (CREATE, ISSUE, TRANSFER and
REFER). The command is retrieved from the transaction
packet and a module manipulates the key-value data store.
After that, the core modules generate a reply packet with the
result and send it to the client. The core modules do not
process other packets such as verification packets, so they

forward packets to the host CPU. It processes these packets
according to a protocol and replies results to clients over the
network.

Table I shows the four commands supported by the FPGA
NIC. These are fundamental commands for a blockchain-
based transfer system, so they are frequently requested by
clients. CREATE, ISSUE and TRANSFER commands update
the value while REFER command tells clients the current
value. It is important to process these commands promptly in
order to improve performance of the off-chain processing. An
FPGA NIC can process these commands faster than a software
application does. Therefore, we design and implement these
functions on the FPGA NIC.

Fig. 1. Overview of Proposed System

TABLE I
FOUR COMMANDS SUPPORTED BY FPGA NIC

Command Description
CREATE Create a new key-value pair.
ISSUE Issue a digital asset to a specified key by adding the

specified value to the current value stored in the KVP.
TRANSFER Transfer a digital asset from the specified key to the

specified key by modifying the current values of a sender
and a receiver stored in KVPs using a specified value.

REFER Refer the current value stored in the KVP.

Fig. 2 illustrates contents of core modules in the proposed
system. Networking, calculating and memory resources are
aggregated into core modules. The core modules are mainly
composed of four modules: packet selector, command extrac-
tor, data store controller and packet generator.

All packets from clients are collected in a packet selector
module. It extracts a transaction packet from all packets. If
a packet includes a transaction, the packet will be passed to
the next module, the command extractor module. If not, the
packet is forwarded to the host CPU via network interface.

The command extractor module chooses one of the four
commands according to the description of the packet. If it is
CREATE, the module extracts the key and passes it to a data
store controller module. It accesses the key-value data store
with the key to fix new key-value pair. The key is hashed by



a hash table when it accesses the data store. If it is ISSUE,
the module extracts the specified key and a value from the
packet and passes them to the data store controller module.
It updates the current value in the data store by adding the
value described in the packet. If it is TRANSFER, the module
extracts three data. There are two keys for a sender and a
receiver, and a transferring value. The command extractor
module passes the data store controller module these data. It
refers the sender’s current value and subtracts the value from
the current value once, in order to check whether the sender
affords to transfer. If the sender does not have enough asset,
the module returns an error message to the client. Otherwise,
the module updates the data store by subtracting the value
from the sender’s current value and adding the value to the
receiver’s current value. If it is REFER, the module extracts
the key and passes it to the data store controller module.

It accesses the data store to retrieve the current stored value.
If the commands are CREATE, ISSUE or TRANSFER, the
data store controller module sends the updated value to a
packet generator module while if the command is REFER,
it sends the referred value to a packet generator module.

The packet generator module generates a payload of a reply
packet including the new value. It also generates a header
of the reply packet by referring header information of the
input packet from a client. It reverses source and destination
MAC addresses, IP addresses and UDP ports. Finally, the reply
packet is sent to the client via network interface.

Fig. 3 illustrates behavior of a key-value data store. The data
store controller module accesses the data store with a hashed
key. N represents the width of hashed key. The hashed key
corresponds with an index of the data store. The data store
has a valid flag to tell whether the corresponding key stores
a valid value. Valid flags are managed by key value pairs by
different modules. Valid flags are initially turned disable. A
valid flag turns enable when the controller module executes a
CREATE command. It checks a valid flag when executing the
command. If the valid flag is enable, the controller module
can update or refer the value of the data store. Otherwise, it
cannot do it. Stored data will not be updated arbitrarily without
proper command. Therefore, asset information of the client is
protected safely.

IV. FPGA-BASED IMPLEMENTATION

We implement the prototype system on the NetFPGA-
SUME board. We describe implementation details in order of
transaction data, data flow and experimental environment.

A. Transaction Data

Table II shows fundamental data constituting transaction.
Transaction data of blockchain varies depending on a protocol,
so we aggregate essential data into an original transaction for
simple implementation and high performance. It is composed
of Command, Transaction ID, Source ID, Destination ID and
Amount, which are critical to execute transaction and update
key-value data store. Although other data are also important,
they are mainly used for transaction verification process.

TABLE II
FUNDAMENTAL DATA FOR TRANSACTIONS

Data Size Description
Command 4Bytes one of four commands

Transaction ID 4Bytes serialized transaction ID
Source ID 4Bytes ID for an asset sender

Destination ID 4Bytes ID for an asset receiver
Amount 4Bytes amount of transferring asset

Timestamp 8Bytes timestamp of a transaction
UUID 16Bytes universally unique identifier
Nonce 4Bytes random number for crypto-

graphic technology
Smart Contract Code 4Bytes an application-level code for

executing a transaction
Signature Variable Length digital signature for identifica-

tion

B. Data Flow

Fig. 4 illustrates a data flow in FPGA NIC. Input packets
from clients are sent to the FPGA NIC via network. We
adopt User Datagram Protocol (UDP) and Internet Protocol
version 4 (IPv4) as the network protocol, because it is suited to
streaming data processing compared to Transmission Control
Protocol (TCP). The packet format is as shown in Fig. 5.
A payload includes Command, Transaction ID, Source ID,
Destination ID and Amount. The rest of the payload is filled
with the number 0 so that a packet size becomes 64Bytes. The
FPGA NIC takes two cycles to receive the packet, because
the NetFPGA-SUME receives and sends 256bits in a cycle
using Advanced Extensible Interface (AXI) protocol. The
input packet is initially passed through an input interface and
an input arbiter chooses a packet from five input interfaces,
four 10GbE Media Access Controller (MAC) modules and one
Direct Memory Access (DMA) module, which is connected
to the host machine. The packet is processed in the core
modules as Fig. 2 and Fig. 3 described. If the command is
CREATE, ISSUE or REFER, Source ID is hashed as the key
when the controller accesses the key-value data store. If it is
TRANSFER, each Source ID and Destination ID is hashed as
the key respectively in order to access the data store. In this
paper, N is fixed as 16 for the prototype system, but the size
of N is variable depending on an FPGA or an application. The
data store of the prototype system is implemented using Block
RAM (BRAM) in the FPGA for attaining high performance.
It is also reasonable to employ Dynamic RAM (DRAM) on
the FPGA board for the data store for the protocol that does
not limit participants. Core modules also decide which port a
packet goes out of and the result packet is forwarded to an
output queue module until the destination is fixed. Finally, an
output interface emits the output packet to the destination.

C. Experimental Environment

Fig. 6 illustrates experimental overview. The prototype
system works as the NIC on the server machine. We assume
that requesting packets are aggregated into a single client
machine, and it emits packets to the host machine sequentially.
The client machine is connected to the server machine with
10GbE cable. An application program of the server machine



Fig. 2. Core Modules

Fig. 3. Behavior of Key-Value Data Store

is written in a C++ language, which has same functions with
an FPGA NIC including a key-value data store. We used
Tcpreplay [19], open-source utilities for emitting captured
packets, as an application program of the client machine when
evaluating throughput and latency. SW means software eval-
uation, which measures performance of the host CPU while
HW means hardware evaluation, which measures performance
of the FPGA NIC. We used same packets when we measured
the performance of SW and HW.

Table III shows environment for client and server ma-
chines. We adopt NetFPGA-SUME board, which possesses
four 10GbE interfaces and Virtex-7 FPGA, as an FPGA-based
programmable NIC as Table IV shows. We used a single
10GbE link out of four links.

We use a P4 language, developed by open-source commu-
nity P4 Language Consortium [20] for implementation. It is
a domain-specific language for expressing network protocol.

Fig. 4. Data Flow in FPGA NIC

Fig. 5. Packet Format

Currently, a P4 language has been paid attention to developers,
because it enables them to reduce the time to implement
new protocol [21]. A program written in P4 language is
initially compiled by Xilinx Software Defined Specification
Environment for Networking (SDNet) compiler [22] to yield



Register Transfer Level (RTL) architecture description. Xil-
inx Vivado design tools [23] secondly transform the RTL
description to an optimized Xilinx FPGA implementation
and finally generate the optimized bitstream for the Xilinx
programmable device by integrating with IP cores provided
by Xilinx. In other words, the tools execute logic synthesis
and place and route. Maximum operating frequency of core
modules is 202.35MHz, because a clock cycle is 5ns and worst
negative slack (WNS) is 0.058ns.

Fig. 6. Experimental Overview

TABLE III
ENVIRONMENT FOR CLIENT AND SERVER MACHINES

Item Client Machine Server Machine
CPU Intel(R) Core(TM) i5-

4460
Intel(R) Core(TM) i5-
3470S

Operating Frequency 3.20GHz 2.90GHz
Memory 8GB 8GB

OS Ubuntu 16.04 Ubuntu 16.04
NIC Mellanox ConnectX-

3 EN 10GbE NIC
NetFPGA-SUME
Reference 10GbE
NIC

TABLE IV
ENVIRONMENT FOR NETFPGA-SUME BOARD

Item NetFPGA-SUME
FPGA Virtex-7 XCV690T
BRAM 52,920Kb
DRAM DDR3 SODIMM 4GB x2
SRAM 72MB QDRII+ SRAMs x3
PCIe PCIe Gen3 x8

Network I/O 10GbE(SFP+) x4

V. EXPERIMENTAL RESULTS

We measured throughput and latency of the software appli-
cation running on the host CPU and the prototype system run-
ning on the FPGA NIC when they execute the four commands
(CREATE, ISSUE, TRANSFER and REFER). We counted
the number of processed transactions per second (tps) as the
throughput on condition that a packet includes a single trans-
action. We changed the number of packets to 1, 10, 100, 1000
and 10000 when measuring throughput. We simulated latency
of core modules, excluding communication latency between
the client and server machines, because it changes depending
on an experimental environment. In addition, Xilinx Vivado
Design Suite reports area utilization and power consumption.

A. Throughput

Figs. 7 to 10 show the throughput when the four commands
are executed. The prototype system improves the throughput
for all commands, compared to software application. It can
process more packets than the software application, because it
pipelines packet and data access processing. As the number
of transactions increases, the throughput improvement rate
also increases. This is because the amount that the FPGA
can process in parallel is larger than that of the software
application. Therefore, the results show that out proposed
system is suitable for a blockchain-based transfer system,
which is expected to increase transaction volume in the future.
We summarize results of the four commands. Throughput
improves 6.25 times on average when a CREATE command is
executed. It improves 5.78 times on average when an ISSUE
command is executed. It improves 5.97 times on average
when a TRANSFER command is executed. It improves 6.14
times on average when a REFER command is executed.
Totally, throughput of the prototype system improves 6.04
times on average, compared to that of the software application.
We aimed at 100,000 tps as required off-chain processing
performance reflecting from current database performance.
The result satisfies required throughput when the number of
transactions is over 100.

B. Latency

Fig. 11 shows the latency when the four commands are
executed. Latency is measured under no load. The prototype
system also improves latency for all commands, compared
to the software approach. This is because it realizes lower
execution latency of core modules at the key-value data
store and reduces a processing time for passing a kernel
network protocol stack. We summarize results of the four
commands. Latency improves 17.2 times on average when a
CREATE command is executed. It improves 17.5 times on
average when an ISSUE command is executed. It improves
10.2 times on average when a TRANSFER command is
executed. The TRANSFER command executes two operations.
The controller module adds the value to a receiver’s account
and subtracts the value from a sender’s account. Therefore,
an improvement rate is lower than that of other commands.
In addition, if the sender’s current value is lower than the
transferring value, the module returns an error message, so it
also affects latency. It improves 16.6 times on average when
REFER command is executed. Totally, execution latency of the
prototype system improves 15.4 times on average, compared to
that of the software application. We aimed at 7 micro second
as required off-chain processing performance reflecting from
current database performance. The result satisfies required
latency for all commands.

C. Area Evaluation

Vivado Design Suite reports the FPGA NIC area utilization
of core modules and the key-value data store. Table V shows
area utilization of the FPGA referred from utilization design
report. It consumes LUT, registers, BRAM, FIFO and I/O pins



 0

 100

 200

 300

 400

 500

 600

1 10 100 1000 10000

T
h
r
o
u
g
h
p
u
t
 
[
k
i
l
o
 
p
p
s
]

Number of Transactions

SW
HW

Fig. 7. Throughput for CREATE Command

 0

 100

 200

 300

 400

 500

 600

1 10 100 1000 10000

T
h
r
o
u
g
h
p
u
t
 
[
k
i
l
o
 
p
p
s
]

Number of Transactions

SW
HW

Fig. 8. Throughput for ISSUE Command

 0

 100

 200

 300

 400

 500

 600

1 10 100 1000 10000

T
h
r
o
u
g
h
p
u
t
 
[
k
i
l
o
 
p
p
s
]

Number of Transactions

SW
HW

Fig. 9. Throughput for TRANSFER Command

 0

 100

 200

 300

 400

 500

 600

1 10 100 1000 10000

T
h
r
o
u
g
h
p
u
t
 
[
k
i
l
o
 
p
p
s
]

Number of Transactions

SW
HW

Fig. 10. Throughput for REFER Command

 0

 10

 20

 30

 40

 50

 60

 70

 80

CREATE ISSUE TRANSFER REFER

L
a
t
e
n
c
y
 
[
m
i
c
r
o
 
s
e
c
]

SW
HW

Fig. 11. Latency for CREATE, ISSUE, TRANSFER and REFER Command

for the prototype system. LUTs and registers are frequently
used for processing the four commands and the hashing mod-
ule. The key-value store is composed of BRAM, because we

assume the number of users can be limited by the protocol. The
resource utilization of BRAM whose capacity is 52,920Kbit,
is 43.27%. It is considered to use DRAM to store larger data,
but the access latency of BRAM is lower than that of DRAM.
FIFO and I/O pins are used for packet transmission. A packet
is waited in FIFO until the signal turns enable.

TABLE V
AREA UTILIZATION OF FPGA

Site Type Number (Total) Utilization [%]
LUT 129715 (433200) 29.94

Register 194887 (866400) 22.49
BRAM 636 (1470) 43.27
FIFO 596 (1470) 40.54

I/O pins 27 (850) 3.18

D. Power Consumption

Vivado Design Suite also analyzed power consumption of
the prototype system. Table VI shows simulated power con-
sumption of the FPGA referred from the power consumption
report. Total on-chip power is 8.883W. The GTH transceivers



[24], which consumes 39 % of the total, are power efficient,
and it is tightly integrated with the programmable logic
resources. Clocks, signals, logics and BRAMs consume the
power relatively high, because the key-value data store is used
for all commands. On the other hand, MMCM, I/O and PCIE
consume the power relatively low.

TABLE VI
POWER CONSUMPTION OF FPGA

Site Type Power Consumption [W] Rate [%]
GTH 3.508 39

Dynamic 4.876 55
Clocks 1.265 26
Signals 1.279 26
Logic 0.814 17

BRAM 1.022 21
MMCM 0.321 7

I/O 0.006 1
PCIE 0.169 2

Static 0.498 6%

VI. SUMMARY

A blockchain-based transfer system has recently been paid
attention for industrial uses, but the protocol limits perfor-
mance. Previous research has focused on protocol modification
to improve performance. However, further improvement for an
off-chain processing not restricted by a protocol is necessary
to cope with increasing transaction volume via IoT products.
It has been reported that performance of software applica-
tions can be improved by constructing KVS on the FPGA.
Therefore, we design and implement the prototype system with
key-value data store on the NetFPGA-SUME board that has
four 10GbE network interfaces. The prototype system supports
fundamental commands (CREATE, ISSUE, TRANSFER and
REFER) for a transferring digital asset. The system is expected
to improve the performance of the system, because it reduces
the processing time for passing a kernel network protocol
stack and accessing the data store. We fixed 100,000 tps
for throughput and 7 micro seconds for latency as required
performance. In fact, we measured throughput and latency of
the prototype system and the software application by request-
ing packets from a client machine. We also analyzed area
utilization and power consumption of FPGA. As the result,
our solution is able to obtain throughput 6.04 times higher on
average and latency 15.4 times lower on average for the four
commands. The results show that our system satisfies required
performance and total on-chip power becomes 8.883W. In this
paper, we employed BRAM instead of DRAM as the key-
value data store and adopted UDP as the transfer protocol to
achieve high performance. For future work, we would like to
expand our implementation using DRAM and TCP in order
to maintain consistency with existing systems.

ACKNOWLEDGMENT

This work was supported by JST CREST Grant Number
JPMJCR1785, Japan.

REFERENCES

[1] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”.
http://bitcoin.org/bitcoin.pdf, 2008.

[2] Kenji Saito and Hiroyuki Yamada. “What’s So Different about
Blockchain?—Blockchain is a Probabilistic State Machine”. In Proceed-
ings of the Distributed Computing Systems Workshops (ICDCSW’16),
pages 168–175, June 2016.

[3] Andreas M Antonopoulos. “Mastering Bitcoin”. O’Reilly Media, Inc.,
2014.

[4] Blockchain Luxembourg. https://blockchain.info/en/charts/
n-transactions-per-block#.

[5] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse.
“Bitcoin-NG: A Scalable Blockchain Protocol”. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’16), pages 45–59, March 2016.

[6] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and
Thajchayapong Suttipong. “Performance Analysis of Private Blockchain
Platforms in Varying Workloads”. In Proceedings of the International
Conference on Computer Communication and Networks (ICCCN’17),
pages 1–6, July 2017.

[7] Xiwei Xu et al. “A Taxonomy of Blockchain-Based Systems for
Architecture Design”. In Proceedings of the International Conference
on Software Architecture (ICSA’17), pages 243–252, April 2017.

[8] Gavin Wood. “Ethereum: A Secure Decentralised Generalised Transac-
tion Ledger”. http://gavwood.com/paper.pdf, 2014.

[9] Elli Androulaki et al. “Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains”. In Proceedings of the European
Conference on Computer Systems (EuroSys’18), page 30, April 2018.

[10] Ledger - Hyperledger Fabric - Read the Docs. https://hyperledger-fabric.
readthedocs.io/en/release-1.2/ledger/ledger.html.

[11] Memcached - a distributed memory object caching system. http:
//memcached.org/.

[12] Sai Rahul Chalamalasetti et al. “An FPGA Memcached Appliance”.
In Proceedings of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA’13), pages 245–254, Feburary 2013.

[13] Michaela Blott et al. “Achieving 10Gbps Line-rate Key-value Stores
with FPGAs”. In Proceedings of the USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud’13), June 2013.

[14] Eric S. Fukuda et al. “Caching Memcached at Reconfigurable Network
Interface”. In Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL’14), pages 1–6, September
2014.

[15] Bharat Sukhwani et al. “Database Analytics Acceleration using FPGAs”.
In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT’12), pages 411–420, September
2012.

[16] Yuta Tokusashi and Hiroki Matsutani. “A Multilevel NOSQL Cache
Design Combining In-NIC and In-Kernel Caches”. In Proceedings of
the IEEE International Symposium on High Performance Interconnects
(HOTI’16), pages 60–67, August 2016.

[17] Yuma Sakakibara, Shin Morishima, Kohei Nakamura, and Hiroki Mat-
sutani. “A Hardware-Based Caching System on FPGA NIC for
Blockchain”. IEICE Transactions on Information and Systems, pages
1350–1360, May 2018.

[18] Shin Morishima and Hiroki Matsutani. “Accelerating Blockchain Search
of Full Nodes Using GPUs”. In Proceedings of the International
Conference on Parallel, Distributed, and Network-Based Processing
(PDP’18), March 2018.

[19] Tcpreplay - Pcap editing and replaying utilities. https://tcpreplay.
appneta.com.

[20] P4 Language Consortium. https://p4.org.
[21] Marian Pritsak. “Is P4 Programming the Future of SDN?”. http://

plvision.eu/p4-programming-future-sdn/, April 2018.
[22] Software Defined Specification Environment for Networking (SDNet).

https://www.xilinx.com/publications/prod mktg/sdnet/backgrounder.
pdf, 2014.

[23] Xilinx Design Suite User Guide. https://www.xilinx.
com/support/documentation/sw manuals/xilinx2018 2/
ug1118-vivado-creating-packaging-custom-ip.pdf, June 2018.

[24] 7 Series FPGAs GTX/GTH Transceivers. https://www.xilinx.com/
support/documentation/user guides/ug476 7Series Transceivers.pdf,
August 2018.


