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SUMMARY Since most sensor data depend on each other, time-series
anomaly detection is one of practical applications of IoT devices. Such
tasks are handled by Recurrent Neural Networks (RNNs) with a feedback
structure, such as Long Short Term Memory. However, their learning phase
based on Stochastic Gradient Descent (SGD) is computationally expensive
for such edge devices. This issue is addressed by executing their learning
on high-performance server machines, but it introduces a communication
overhead and additional power consumption. On the other hand, Recursive
Least-Squares Echo State Network (RLS-ESN) is a simple RNN that can
be trained at low cost using the least-squares method rather than SGD. In
this paper, we propose its area-efficient hardware implementation for edge
devices and adapt it to human activity anomaly detection as an example
of interdependent time-series sensor data. The model is implemented in
Verilog HDL, synthesized with a 45 nm process technology, and evaluated
in terms of the anomaly capability, hardware amount, and performance.
The evaluation results demonstrate that the RLS-ESN core with a feed-
back structure is more robust to hyper parameters than an existing Online
Sequential Extreme Learning Machine (OS-ELM) core. It consumes only
1.25 times larger hardware amount and 1.11 times longer latency than the
existing OS-ELM core.
key words: on-device learning, machine learning, anomaly detection

1. Introduction

In recent years, with the development of IoT devices, we are
entering an era in which things communicate not only with
people but also with each other. Anomaly detection on sen-
sor data is one of practical IoT applications. For example,
monitoring the vibration pattern of fans in data centers can
prevent servers from going down. Because the real-world
environment changes little by little, their data also change
little by little. In other words, their time-series data depend
on their previous state. Thus, when using data from IoT de-
vices to detect anomalies, detection models should take into
account the dependencies between the data. In addition, IoT
devices often provide multi-dimensional data. For example,
in the case of human activity recognition, it is necessary to
make use of the rotational information obtained from vari-
ous parts of a human body [1].

Recurrent Neural Networks (RNNs) are good at pro-
cessing sequential data of arbitrary length because they have
an internal feedback structure. This makes them applicable
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to process time-series data. Typical RNNs use the Stochastic
Gradient Descent (SGD) method for learning. It is an itera-
tive method for optimizing target neural networks with suit-
able smoothness properties, such as differentiable or sub-
differentiable. However, this iterative method often takes
a long time to achieve high generalization capability. It is
computationally expensive to train neural network models
with SGD on IoT devices with limited resources [2]. This
issue is not a matter if the IoT devices execute only pre-
diction tasks using the model parameters which have been
trained on a server with rich computational resources. Such
a method is useful if the data is always stationary and the
data distribution do not change from the time of learning.
In some cases, this assumption may not be practical for IoT
devices, because the real world environment often changes
from time to time. This phenominon is referred as concept
drift [3]. A lightweight approach to train the model directly
on the device is thus needed.

Echo State Networks (ESNs) [4] are simple RNNs that
can be trained at low computational cost using the least-
squares method rather than the SGD. In this paper, we pro-
pose its area-efficient hardware implementation for edge de-
vices and adapt it to human activity anomaly detection as an
example of interdependent time-series sensor data. ∗∗ The
model is implemented in Verilog HDL, synthesized with a
45 nm process technology, and evaluated in terms of the
anomaly detection capability, hardware amount, and perfor-
mance.

The rest of this paper is organized as follows. Section 2
introduces RNNs for time-series data, their lightweight ap-
proach, and the scoring algorithm for anomaly determina-
tion. Section 3 shows related work. Section 4 proposes an
area-efficient RNN core with anomaly determination logic,
and Sect. 5 describes the RTL implementation. Section 6
shows the evaluation results. Section 7 concludes this pa-
per.

2. Background

An anomaly detection in time-series data consists of two
steps. The first step is time-series prediction, where the
model predicts the future inputs. The second step is anomaly
determination. In the anomaly detection in time-series data,
an output value of the first step is compared with the actual

∗∗This paper is an extended version of our 3-page extended ab-
stract appeared in [5].
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Fig. 1 Recurrent neural network

input value. When the model gets normal input data, the er-
ror value becomes small because the model can accurately
predict the answer.

In this section, we explain the RNNs which are of-
ten used for time-series prediction and their lightweight ap-
proach. Then, we introduce Hotelling’s T-square test [6] as
one of the anomaly determination methods.

2.1 Recurrent Neural Networks

RNNs are one of the neural networks for processing time-
series data. The input data to RNNs are defined as follows.
Consider a time-series

X = {x1, x2, . . . , xτ}, (1)

where each sample xi ∈ Rk×n in the time-series is an n-
dimensional vector of batch size k ∈ N. RNNs predict l
outputs for d inputs. d is called the window size. We as-
sume d is 1 unless otherwise specified.

The recursive connection plays the role of a dynamic
memory, so that RNNs can reflect task demands in the con-
text of prior internal states [7]. Although there are various
RNNs structures, this paper deals with the one that generates
output data at each time step and has a feedback connection
between hidden units [8], as shown in Fig. 1.

RNNs start prediction or learning by making the ini-
tialization state h0 ∈ Rk×m in the forward propagation; then
at each time step from i = 1 to i = τ, the model calculates
an output yi ∈ Rk×n′ with the following formula:

hi = G(αxi + γhi−1), (2)

yi = F(βhi), (3)

where G and F are activation functions for the hidden and
output layers. α ∈ Rm×n, β ∈ Rn′×m, and γ ∈ Rm×m are the
weight matrices of the connections from the input to the hid-
den layer, from the hidden layer to the output layer, and from

Fig. 2 Echo state network

the hidden layer to the hidden layer, respectively. Typically,
the output yi derived from an RNN model is connected to an
input for another model. Stacking them, the model improves
the representational capability.

As shown in Eq. (4), a typical RNN is optimized by the
iterative method of SGD because of non-linearity. For the
loss value li ∈ R obtained by comparing the model’s pre-
diction result yi with the correct answer data t i, the model
parameters w ∈ {α,β,γ} are updated by the following equa-
tion:

w = w − η∇wli(w), (4)

where ∇w is a vector differential operator for w, and η is a
learning rate. li is a loss value, which can be calculated with
the following equation:

li =
1
n′
∥yi − t i∥22. (5)

By iterating Eq. (4) and updating the parameters, the model
can obtain optimal prediction results for the training dataset.
This method can optimize arbitrary neural network models
with suitable smoothness properties. However, it requires
a large data set and a long computation time to achieve a
high generalization. The delay of learning widens the gap
between the latest true distributions of normal data and ones
trained by the models [9], which makes detecting anomalies
more difficult. To solve this issue, the iterative approach
should be replaced with the approach that sequentially up-
dates the parameters. In the following subsections, we de-
scribe an example of this solution.

2.2 Echo State Networks

An ESN [4] is a simple approach to train RNN. As shown
in Fig. 2, it consists of input layer, hidden layer, and output
layer.

Given an i-th input xi, the model calculates the hidden
layer output hi as follows:

hi = G
(
(1 − δ)hi−1 + δ(xiα + hi−1γ)

)
, (6)

where α ∈ Rm×n and γ ∈ Rm×m are fixed weights, δ ∈ R is a
leak rate, and G is an activation function, respectively. The
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larger δ is, the less the effect of input data xi, because the im-
pact of the feedback becomes stronger, and the model will
keep the previous state. Then, the model outputs yi ≡ hiβi.
Here, βi ∈ Rm×n′ is the i-th weight connecting the hidden
and output layers updated by the least-squares method. Us-
ing Mean Squared Error, the objective function is defined as
follows:

L(βi) =
1
2
∥hiβi − t i∥22. (7)

By minimizing L for βi, the optimal solution is obtained by
the following equation:

βi+1 = h+i t i, (8)

where h+i is the pseudo-inverse matrix of hi and can be cal-
culated using well-known methods, such as Singular Value
Decomposition and QR Decomposition.

For updating βi adaptively, we can use the Recursive
Least-Squares (RLS) [10] algorithm known as a fast online
adaptation method in linear systems.

2.3 Recursive Least-Squares Echo State Network

An ESN with the RLS based model update algorithm is
known as RLS-ESN [11]. RLS is an algorithm that sequen-
tially applies the least-squares method. We consider the case
in which the i-th data of batch size k is given as an input
data. RLS with forgetting rate λ for Eq. (7) is represented as
follows:

L(βi) =
1
2

∥∥∥∥∥∥∥∥∥∥

λi−1

...
1




h1
...

hi

βi −


t1
...
t i



∥∥∥∥∥∥∥∥∥∥

2

2

. (9)

Here, using ki ≡


λi−1h1
...

hi


T 

h1
...

hi

, the optimal βi that mini-

mizes L(βi) is expressed as follows:

βi = βi−1 + k−1
i hT

i (t i − hiβi−1) (10)

ki = λki−1 + hT
i hi. (11)

Assuming pi ≡ k−1
i and qi ≡ 1

λ
pi, Eqs. (10) and (11) finally

yield the following equations:

pi = qi−1 − qi−1hT
i (I + hiqi−1hT

i )
−1

hiqi−1 (12)

βi = βi−1 + qihT
i (t i − hiβi−1) (13)

As shown in Eqs. (12) and (13), the weight parameter βi is
derived from the previous intermediate result pi−1. There-
fore, the dedicated memory or storage for storing past train-
ing data is unnecessary, and thus the requirements for se-
quential learning are satisfied.

2.4 Hotelling’s T-Square Test

Hotelling’s T-square test [6] is a method to judge whether

two populations are coinciding or not. In anomaly detection,
the probability distribution of the input data is compared to
that of the normal data in order to see whether the input
data is normal or not. Assume that the loss values D =
{l1, l2, . . . , lτ} independently follow the normal distribution
as follows:

N(li|µ, σ) =
1
√

2πσ
exp

(
− (li − µ)2

2σ

)
, (14)

where µ is the mean and σ2 is the variance. Assuming the
dataset contains a few or no anomalous data, the anomaly
score ai of the loss value li is expressed as follows:

ai =
(li − µ)2

σ2
. (15)

When the number of samples τ is sufficiently large, ai fol-
lows a χ-square distribution with 1-degree of freedom and a
scale factor of 1:

χ2(ai|1, 1) =
1

2Γ(1/2)

(ai

2

)−1/2
exp

(
−ai

2

)
, (16)

where Γ is gamma function, where

Γ(z) =
∫ ∞

0
tz−1e−tdt. (17)

The integral from 0 to ai of χ-square distribution is∫ ai

0
χ2(x|1, 1)dx = 1 − r, (18)

where r(0 ≤ r ≤ 1) is a confidence interval. By determining
r, we automatically get a threshold. For example, when the
confidence interval r is set to 0.99, the threshold a∗ is∫ a∗

0
χ2(x|1, 1)dx = 0.01 (19)

∴ a∗ ≃ 7.88.

3. Related Work

In [1], anomaly detection of time-series data is addressed
using Long Short Term Memory (LSTM) [12], which is a
type of RNN as well as ESN. As a network architecture,
they use stacked LSTM networks for anomaly detection in
time-series data. The stacked LSTM consists of two LSTM
models and connects one output to the other input. The
network is trained with normal data in advance and used
as a predictor over a number of time steps. The loss val-
ues are modeled as a multivariate Gaussian distribution with
pre-trained parameters, which is used to assess the likeli-
hood of anomalous behavior. As compared by [13], LSTM
must spend more training time than ESN unless there are
too many parameters to optimize; thus, the stacked LSTMs
are generally computationally expensive if we sequentially
optimize their parameters on IoT devices.
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There is a study of models that can be trained on low-
end edge devices, such as IoT devices. In [2], a low-cost and
low-latency on-device learning design using Online Sequen-
tial Extreme Learning Machine (OS-ELM) [14] is proposed
and implemented on FPGAs.

OS-ELM is a neural network similar to RLS-ESN that
is trained sequentially with RLS. Unlike RLS-ESN, the hid-
den layer in OS-ELM is calculated by the following equa-
tion:

hi = G(xiα). (20)

To speed up the calculations, the authors of [2] propose
a hardware implementation by limiting the batch size k
to 1. The computational cost of the matrix inversion
(I + hiqi−1hT

i )
−1

in Eq. (13) is significantly reduced because
the size of the target matrix (I + hiqi−1hT

i ) is k × k. As a
result, parameter updating algorithm derived from Eq. (13)
becomes as follows:

pi = qi−1 −
qi−1hT

i hiqi−1

I + hiqi−1hT
i

(21)

OS-ELM is not suitable for handling time-series data
because it has no feedback structures as shown in Eq. (20).
In this paper, we apply the Eq. (21) to RLS-ESN to deal ef-
ficiently with time-series data.

FORCE learning [15] is one of the most popular meth-
ods for online learning on ESN. In FORCE learning, the
weight matrix β is updated by RLS as with RLS-ESN [11],
but the original FORCE learning [15] has no forgetting
structure. As shown in the experiment in Sect. 6.5, the for-
getting rate λ causes an enormous impact on the AUC score.
Although this paper focuses on RLS-ESN since it was pro-
posed in 2003, there is a similarity between them, and so our
approach would be extended to FORCE learning as a future
work.

Hardware implementation of echo state network has
been studied, but most of them are trained offline [16], [17].
In [18], an implementation of the ESN architecture of reser-
voir computing with real-time training on FPGA without
any software support is shown. However, the model must
store an enough data to update weight matrix β to follow
the concept drift since [18] uses least-squares method for the
training algorithm. It is not area-efficient because it requires
as much memory as the data for the update.

4. RLS-ESN Core Design

In this section, we propose the RLS-ESN core design that
consists of two stages: learning/prediction stage with RLS-
ESN and scoring stage with the adaptive Hotelling’s T-
square test.

4.1 Learning/Prediction Stage with RLS-ESN

We assume both the learning and prediction are executed on
edge devices as well as [2]. Communication cost between

client and server is a crucial issue especially for sensor de-
vices with limited battery capacity and/or those with lim-
ited wireless connection. We propose an approach to make
the computational complexity of learning and prediction as
small as possible.

We first compare RLS with the SGD which is com-
monly used to train neural network models. Although we
can train deep learning models with an arbitrary number of
networks by using SGD, here we consider only updating the
final layer of the model. The number of the weight parame-
ters is m2, assuming that the dimension of the hidden layer
and the output layer are m. Since SGD newly computes
each weight parameter for each iteration, the time complex-
ity increases proportionally with the number of weight pa-
rameters (i.e., O(m2)). Since the model repeats this process
to achieve generalization, the time complexity of SGD is
O(nm2) as a result, where n is the number of iterations. The
number of iterations depends on the task, but its impact on
the complexity cannot be ignored. On the other hand, the
time complexity of RLS is O(m2) from Eqs. (21) and (12) † ;
thus, RLS is superior in terms of computational complexity.
Taking advantage of this feature, we adopt RLS-ESN as an
RNN to run on edge devices.

We found that computations for the hidden layer con-
tain a lot of constant operations. When dividing the formula
of the hidden layer into the constants and variables, they can
be transformed as follow.

G
(
(1 − δ) Hi−1 + δ (xiα + Hi−1γ)

)
=G

(
Hi−1

(
(1 − δ) I + δγ

)
+ xiδα

)
=G

([
δα

(1 − δ)I + δγ

] [
xi Hi−1

])
=G(ζ z),

(22)

where the vertical and horizontal bars denote concatena-

tions of two matrices, ζ ≡
[

δα
(1 − δ)I + δγ

]
, and z ≡[

xi Hi−1

]
. Equation (22) can be represented as a ma-

trix product. The hidden layer can be computed with only
a single matrix calculation and activation, simplifying the
hardware implementation of the model. After all, an ESN is
the equivalent of fully-connected neural networks.

We adopt fixed-point numbers for the RLS-ESN core.
RLS-ESN is a neural network that trains and predicts at the
same time. In general, to train a neural network, it is bet-
ter to prepare as many decimal digits as possible, while it
is better to implement as few bits as possible to reduce the
hardware amount. We analyze a dataset used in Sect. 6 in the
software simulation, and then a 35-bit Q20 fixed-point num-
ber format is required in our RLS-ESN core for the dataset.
Please note that the format should be determined by consid-
ering application requirements in terms of cost and accuracy.

†The terms with the highest time complexity in Eqs. (21) and
(12) are the products of m-dimensional vectors such as qi−1 hT

i .
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4.2 Scoring Stage with Adaptive Hotelling’s T-Square Test

Hotelling’s T-square test uses the mean and variance of the
normal population. Practically, these values are constants,
and they should be determined based on prior knowledge.
In other words, it assumes implicit pre-training for them and
the stationarity of the data. Data from IoT devices, however,
is not always stationary since the real world environment
may shift as time goes by. This paper tackles this issue with
the following two techniques: 1) calculating weighted statis-
tics µi and σ2

i using forgetting rate r, and 2) rearranging the
equation to be an asymptotic expression to handle sequential
input data.

The equations for the mean and variance using the for-
getting rate r are as follows:

µi =
1
si

i∑
k=1

ri−kli, (23)

σ2
i =

1
si

i∑
k=1

ri−k(lk − µi)
2, (24)

where si =
∑i

k=1 ri−k. By multiplying the forgetting rate
r which is less than one, the older the data becomes, the
smaller its effect is. We can then rewrite Eqs. (23) and (24)
as follows:

µi =
1
si

(rµi−1si−1 + li) (25)

σ2
i =

1
si

(
r(µ2

i−1 + σ
2
i−1)si + l2i

)
. (26)

As shown in Eqs. (25) and (26), we can remove the summa-
tion and calculate the statistics µi and σ2

i sequentially.

5. Implementation

The implemented RLS-ESN core shown in Fig. 3 processes
both the learning/prediction and the scoring stages.

5.1 Learning/Prediction Stage with RLS-ESN

As mentioned in Sect. 4.2, we adopt the 35-bit Q20 number

Fig. 3 Overview of RLS-ESN core

as a fixed-point number format.
Figure 4 illustrates a state transition diagram of the pro-

posed RLS-ESN core. It shows that each circle is corre-
sponding to a matrix operation (e.g., add, mult, and div), and
each operation consists of the following three substeps: 1)
update the array index, 2) read operands from target matri-
ces and store them in registers, and 3) execute the operation
and save the computation result. For multiply-add opera-
tion, we use mult and add in order.

Figure 3 shows a schematic diagram of the imple-
mented RLS-ESN core. The weight parameters of all the
layers and input data are stored in mem0 and mem1, re-
spectively. mode signal specifies the operation of the stage
(i.e., predict or train). The stage calculates anomaly score
ai (Eq. (15)) in both the modes. It updates the parameter βi

only when mode is 1. prevH is the register that stores the
previous-hidden layer and updated with the previous calcu-
lation result in parallel. The overall processing flow is as
follows:

1. read ζ from mem0 and input data xi from mem1, and
feed them to the stage,

2. calculate the hidden layer by using the multiply-add
unit,

3. read βi from mem0 and compute output and loss values,
and

4. calculate the anomaly score ai using Algorithm 1
which will be explained in Sect. 5.2.

If the mode is 1, it updates the weight parameter βi; other-
wise, it finishes the process.

5.2 Scoring Stage with Adaptive Hotelling’s T-Square Test

To reduce hardware amount, arithmetic units used in the
ESN should be reused for the adaptive Hotelling’s T-squared
test stage. In this case, since a fixed-point number format is
used for the arithmetic units, a special care is required for
avoiding the value overflow.

Regarding the value overflow, we conducted extensive
RTL simulations to detect where the value overflows occur
in our design. As stated in Sect. 6, we set the forgetting rate
to 0.9999, and then intermediate value si in Eqs. (25) and
(26) becomes about 10000 at i → ∞, resulting in an over-
flow unless the format has over 15 bits for the integer part.
Since the loss value, which is the input to this stage, would
become high for anomalous data, we must pay attention to
the squared operation in Eqs. (25) and (26). On the other
hand, its mean value is much smaller than the maximum
loss value, because anomalies occur occasionally.

As for the nature of the arithmetic unit, we need to re-
arrange the computational steps in order to take advantage
of their characteristics. The multiply-add unit in ESN cal-
culates scalar sum and product. We rearrange Eqs. (25) and
(26) to utilize this operation as much as possible. Algorithm
1 shows computational steps suitable for the RLS-ESN core.

By dividing si and li in advance by si−1, which tend to
be relatively large in value, we make the input value to the
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Fig. 4 State transition diagram of RLS-ESN

Algorithm 1 Scoring algorithm with adaptive Hotelling’s T-
square test

r ∈ [0, 1]
s0 ⇐ 0
µ0 ⇐ 0
σ2

0 ⇐ 0
for until li exists do

si ⇐ rsi−1 + 1
t ⇐ r si−1

si

u⇐ li
si

µi ⇐ tµi−1 + u
v⇐ µiµi + σ

2
i−1

w⇐ tv − µi

σ2
i ⇐ liu + w

ai ⇐ (li−µi)2

σ2
i

end for

multiplier as small as possible. All the calculation steps of
the statistics are in the form of A × B + C, so that we can
utilize the multiply-add unit in ESN efficiently in Fig. 3.

6. Evaluations

In this section, we compare the accuracy of RLS-ESN and
other anomaly detection algorithms based on neural net-
works.

We evaluate the anomaly detection capacity at the al-
gorithmic level and the area and performance when imple-
mented as dedicated circuits. The software implementation
is used for the former and the RTL design is used for both.
We implement the design in Verilog HDL with a 45 nm pro-
cess technology for the dedicated circuit. Tables 1 and 2
show the details of the experimental environments for the
software and hardware implementations. As shown in Ta-
ble 1, the software environment for LSTM-AD is quite rich
because LSTM-AD has a much larger number of parame-
ters than the other models, as we will show in Table 3 (see
trainable parameters), and uses SGD for training, which re-
quires abundant computational resources. However, LSTM-
AD has an overwhelmingly long training time even in such a
rich environment, as we describe the details in Sect. 6.9. We
are planning to implement the proposed RLS-ESN core as a
dedicated circuit integrated with a sensor at a low frequency.
In this experiment, however, the design is operated at 100
MHz to reasonably compare its performance with those run-

ning on an embedded CPU at 650 MHz.

6.1 Parameters Selection for RLS-ESN

As shown in Eq. (22), hi consists of three parameters α, γ,
and δ. In this section, we explain the way to generate these
parameters. First, we generate α following with [19]. In
[19], each element of α is set to either c or −c with equal
probability, where c is a real number. The paper shows that
the performance tends to improve as c decreases. Then, each
element of γ satisfies the echo state property [4]. The echo
state property is a condition for the ESN to perform well
on a given task. Briefly, γ should have a fading memory.
To satisfy the echo state property, the spectral radius of the
hi should be close to, but not equal to one [4]. The spec-
tral radius works the same way as the forgetting rate for β.
Thus, we regard them as the same parameter. Finally, δ is
selected as the one with the highest AUC score throughout
the experiments. As mentioned in the paper, the larger δ is,
the less the effect of input. We use the highest performing
parameters as shown in Sect. 6.7 (i.e., c = 0.05 and δ = 0.5).

6.2 Comparison Targets

We compare three kinds of models: RLS-ESN, LSTM-AD,
and OS-ELM. Regarding the accuracy of each model, we
show that a feedback structure is important for prediction
on time-series data. For reference, we implement LSTM-
AD based on the previous work [1], which consists of two
layers of LSTM-AD. Figure 5 shows the details of the struc-
ture of LSTM-AD. Both the layers are fully-connected and
their Dropout rate is 0.2. We implement RLS-ESN and OS-
ELM algorithms with Numpy 1.16.2 and LSTM-AD with
Tensorflow 1.14.0 as the software implementation. Table 3
shows the comparison targets and their parameters. The in-
put data size of RLS-ESN and OS-ELM is the same, but
the number of input layer nodes of RLS-ESN is practically
56, because a feedback from the hidden layer in the previ-
ous step is also fed to the input layer. The large number
of parameters directly leads to an increase in the required
RAM amount since both SGD and RLS must temporarily
store their corresponding data (i.e., gradients or pi) depend-
ing on the number of trainable parameters. Please note that
the number of trainable parameters of LSTM-AD is much
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Table 1 Environment for software implementation

For LSTM-AD For Others
Processor Intel(R) Core(TM) i7-6850K Cortex-A9 processor
Operating frequency 3.6GHz 650MHz
Operation system Ubuntu 18.04 Ubuntu 18.04
Accelerator GeForce GTX 1080 -

Table 2 Environment for hardware implementation

Environment
Logic simulator Icarus Verilog 10.1
Logic synthesis Synopsys Design Compiler 2018.06-SP4
Technology library Silvaco 45 nm Open Cell Library
Operation frequency 100 MHz

Table 3 Parameters of each model

LSTM-AD OS-ELM RLS-ESN
Window size d 128 1 1
Forgetting rate r 0.9999 0.9999 0.9999
Input layer size n 3,584 28 28
Hidden layer size m - 28 28
Output layer size n′ - 28 28
Forgetting rate λ - 0.9999 0.9999
Trainable parameters 45,948 784 784

Fig. 5 Details of the structure of LSTM-AD

greater than the others. We use these parameters unless oth-
erwise specified. Please note that, the proposed RLS-ESN
core includes the scoring module with adaptive Hotelling’s
T-Square test, while the existing OS-ELM core [2] does not
include it.

6.3 Dataset

We use RealWorld (HAR) dataset in [20] to evaluate de-
tection accuracy in a real-world environment. Fifteen sub-
jects with age 31.9±12.4, height 173.1±6.9 cm, and weight
74.1±13.8 kg perform the following eight actions: descend-
ing stairs, climbing stairs, jumping, lying down, standing,
sitting, running, and walking. Each input data is a collec-
tions of sensor values from smartphones attached to seven
different body parts: chest, forearm head, shin thigh, upper
arm, and hip.

6.4 Data Preparation

The dataset contains raw data obtained from wearable sen-
sor devices (e.g., accelerometers and gyroscopes). Theoreti-
cally, an prediction model can be constructed with raw data,
but it is practically difficult for shallow and simple neural
networks to acquire a good prediction model by learning
only with raw data in our experiment. The model can judge
anomalies by whether a subject has made a different motion
than before. As a preprocessing step, rotation data is con-
structed from the raw data. Then, the rotation data is fed
to the neural networks so that they can effectively construct
a beneficial prediction model even with shallow neural net-
works. The origin of human activity is the rotation of each
human joint. We can easily convert the raw data into rota-
tional data by using well-known methods for extracting rota-
tion from various sensor devices, such as Kalman filter [21]
and Madgwick filter [22].

As the dataset contains raw data from accelerometers,
gyroscopes, and magnetic field sensors, we adopt the Madg-
wick filter [22], which uses them to reconstruct the rotation.
To restore rotation, the Madgwick filter requires all of these
raw data generated at the same time, though the sampling
interval of each sensor device is slightly different.

We thus approximate the data at the same timing with
bilinear interpolation between the data based on the sam-
pling interval of each sensor device. The function that lin-
early interpolates the values a and b with the ratio c ∈ [0, 1]
is

lerp(a, b, c) = ca + (1 − c)b. (27)

We use continuous running data from subjects 1 and
10-13. Although RLS-ESN and OS-ELM do not require
pre-training, in order to match the experiment conditions
with LSTM-AD, the data of subjects 13 and others are used
for test and pre-training, respectively. The number of total
steps τ in these data are 30,794 and 124,125, respectively.
Given the input data X = {x1, x2, . . . , xτ−1}, the correct an-
swer to the model is Y = {x2, x3, . . . , xτ}, where xi is the
i-th sample data, each of which consists of 28 values (i.e.,
four-dimensional rotation data from seven body parts).

6.5 Accuracy of RLS-ESN Core

We use Area Under Curve (AUC) as a metric to evaluate ac-
curacy. AUC is one of widely-used metrics in anomaly de-
tection task. The false positive rate and the true positive rate
are taken as X and Y axes. The respective ratios at various
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threshold values are plotted to draw Receiver Operatorating
Characteristic (ROC) curve. AUC is then calculated by in-
tegrating the ROC curve.

Table 4 shows the AUC scores for each model with dif-
ferent λ parameter. λ indicates how βi tends to forget past
data; βi never forgets past information when λ = 1.0000.
All the AUC scores shown in Table 4 are calculated us-
ing the anomaly scores ai from Hotelling’s T-square test in
Eq. (15). LSTM-AD, RLS-ESN (λ = 0.9999), and OS-ELM
(λ = 0.9999) achieve higher AUC scores than 94%, while
OS-ELM (λ = 0.9990) result in about 66%. More specif-
ically, the results of OS-ELM and RLS-ESN become com-
parable to that of LSTM-AD by setting the hyperparame-
ter λ appropriately; however, the AUC score gets worse de-
pending on λ in OS-ELM. Since the OS-ELM model can-
not use past data to make time-series predictions, it must
learn the relationship between inputs and outputs in order
to produce a correct answer without context. In OS-ELM
and RLS-ESN, the AUC score decreases to about 76% with
λ = 1.0000. Adapting all previous data means that the new
data has a relatively small effect on the model, so that the
model cannot deal with the concept drift. Conversely, set-
ting λ to a value less than 1, RLS-ESN has comparable capa-
bilities to LSTM-AD while the additional cost for RLS-ESN
core is reasonable as evaluated in Sect. 6.8.

Hardware implementation of RLS-ESN (denoted as

Table 4 AUC score of each model

Model Forgetting rate λ AUC score [%]
LSTM-AD - 94.72
OS-ELM 0.9990 65.76
OS-ELM 0.9999 94.73
OS-ELM 1.0000 76.10
RLS-ESN 0.9990 94.55
RLS-ESN 0.9999 95.00
RLS-ESN 1.0000 76.31
RLS-ESN core 0.9999 94.54

Fig. 6 Relationship between anomaly score and time step for three forgetting rates (r = 1.0000,
r = 0.9999, and r = 0.9990)

RLS-ESN core) in Table 4 achieves a comparable AUC
score to that of the software implementation. The hardware
implementation has a slightly lower score than the software
implementation because, for the hardware implementation,
we use the fixed-point number format, which reduces com-
putational accuracy.

6.6 Forgetting Rate for Statistics vs. Accuracy

In this section, we evaluate the anomaly detection accuracy
by changing the forgetting rate r for Hotelling’s T-square
test. If the model is not stable, we may not be able to evalu-
ate the effectiveness of the model correctly by using a fixed
threshold. For example, if the anomaly score gradually de-
creases, it is not appropriate to continue using the thresh-
old. Therefore we demonstrate raw anomaly scores to ob-
serve if it tends to be less responsive to anomalies. Figure 6
shows the relationship between the raw anomaly score and
the time step for three forgetting rates (e.g., r = 1.0000,
r = 0.9999, and r = 0.9990). In the graph, the cyan and
red ranges mean normal and abnormal, respectively. With
r = 1.0000, the variance σ2

i increases due to the deviation
of the distribution from the initial training data, and so the
model becomes less responsive for abnormal inputs. On the
other hand, in the case of r = 0.9999, the influence of past
data gradually decreases, so that the model can keep sensi-
tivity for an abnormal input. In fact, when 99.9% of the area
on χ-square distribution is regarded as normal, the model
can detect all the anomalies correctly, since the minimum
anomaly score calculated by the model is about 13.34 with
r = 0.9999. Finally, when r is set to 0.9990, the anomaly
score becomes unstable, because the model forgets the past
data to predict. As a result, for example, the anomaly score
becomes 45.24 at around step 17,500, which is larger than
that of the truly anomalous data at around step 12,500. We
cannot use the same threshold as with r = 0.9999 because
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Table 5 AUC scores for RLS-ESN with different c parameters

c AUC [%]
0.4 89.91
0.2 89.98
0.1 93.70
0.05 95.00
0.025 94.24
0.0125 94.44

Table 6 AUC scores for RLS-ESN with different δ parameters

δ AUC [%]
0.6 91.24
0.5 95.00
0.4 91.97

Table 7 Post-synthesis logic area of each model

Model Area [µm2] mem0 size [byte]
OS-ELM core w/o scoring 812,900 10,290
RLS-ESN core w/o scoring 820,648 13,720
RLS-ESN core w/ scoring 822,779 13,720

the anomaly scores with r = 0.9990 are generally higher
than those with r = 0.9999. Still, the score sensitively re-
acts against anomalous input and it can work more stably
than the case of r = 1.0000.

6.7 Other Parameters vs. Accuracy

In this section, we show the AUC scores for RLS-ESN with
different c and δ parameters. Table 5 shows the AUC scores
for RLS-ESN with different c parameters. There is a rela-
tionship between c and the AUC score, but it is small. Even
if c is double or half the value of 0.05, the effect on the AUC
score is about 1%. The relationship between δ and AUC
score is shown in Table 6. The AUC score is highest when δ
is set to 0.5, but the RLS-ESN achieves relatively high AUC
scores of over 90% with a range of 0.4 ≤ δ ≤ 0.6. This
means that changes of δ act more robustly on AUC score
than those of forgetting rate for β. RLS-ESN has more pa-
rameters than OS-ELM due to the complexity of the struc-
ture, but these parameters can be successfully determined as
mentioned above.

6.8 Hardware Amount

Table 7 shows the comparison of the existing OS-ELM
core [2] and the RLS-ESN core in terms of logic area af-
ter the design synthesis. Hardware overhead for the RLS-
ESN core is small. The RLS-ESN core is about 1.25 times
larger than the OS-ELM core due to the additional registers
to store the hidden-layer output which are fed back to the
input layer. The size of mem0 in Fig. 3 also increases for
the same reason. The overhead for the scoring module is
actually small. When we include the scoring module, the
post-synthesis logic area increases by no more than 1%.

6.9 Execution Latency

Figure 7 shows the prediction, training, and scoring laten-

Fig. 7 Latencies for prediction, training, and scoring of each implemen-
tation

Table 8 Training time of each model

Model Training time [s]
LSTM-AD 30484.809
OS-ELM 85.155238
RLS-ESN 93.099750
OS-ELM core 29.454278
RLS-ESN core 33.349572

cies of each implementation. OS-ELM core and RLS-ESN
core are the hardware implementations. Their software im-
plementations are executed on the embedded CPU listed in
Table 1. As for prediction latency, the RLS-ESN core is
about 1.64 times slower than the OS-ELM core because of
the increase in input dimensions associated with feedback
connections from the previous hidden layer to the input data.
On the other hand, the training latency is the same in both
algorithms since the matrix βi has the same size. As a result,
the overall latency of the RLS-ESN core is not much slower
than that of the OS-ELM core. In the RLS-ESN core, the
latency overhead for the scoring is small compared to the
total execution time (i.e., less than 1%). The hardware im-
plementation of RLS-ESN is about 2.86 times faster than
the software implementation (running at 650 MHz) when
the RLS-ESN core is implemented as a small dedicated cir-
cuit running at 100 MHz.

Table 8 shows the training time of each model with
data from subjects 1 and 10-12. OS-ELM and RLS-ESN are
trained with RLS, and LSTM-AD is trained with SGD. The
training time of LSTM-AD is longer than that of RLS-ESN
because of iterative processing by SGD and a large number
of parameters. Since OS-ELM and RLS-ESN are trained
with RLS, they take a shorter training time than LSTM-AD
as shown in Fig. 7.

7. Conclusions

Toward on-device anomaly detection for time-series data in
the real environment, this paper proposed an anomaly detec-
tion method based on RLS-ESN as a simple form of RNNs.
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We showed that, the proposed RLS-ESN core can obtain a
high anomaly detection capability comparable to LSTM-AD
despite its lightness. The additional hardware and latency
overheads for the RLS-ESN core are reasonable compared
to the existing OS-ELM core [2] without feedback structure.

In this paper, research target is human behavior
anomaly detection. Although the proposed RLS-ESN core
achieves better anomaly detection capability for the HAR
dataset, further investigation is required when applying it to
other task domain. Also, the implementation of the Madg-
wick filter is out of scope in this paper, but it should be inte-
grated with the RLS-ESN core in practice.

Also, the implementation of the Madgwick filter is out
of scope in this paper, but it should be integrated with the
RLS-ESN core in practice. If the model proposed in this
study is to be deployed as a product, the hardware amount
should be kept as small as possible while minimizing the la-
tency. For example, using the characteristics of the weight
matrix, the memory is reduced, and it leads to a reduction
of the hardware amount. As mentioned in Sect. 6.2, the sub-
matrix α consists of only c or −c in this study. As a future
work, by encoding c and −c with 0 and 1, each element of α
can be represented in 1 bit.
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cost hardware implementation of reservoir computers,” Proc. 24th
International Workshop on Power and Timing Modeling, Optimiza-
tion and Simulation (PATMOS), pp.1–5, Sept. 2014.

[18] Y. Yi, Y. Liao, B. Wang, X. Fu, F. Shen, H. Hou, and L. Liu, “FPGA
based spike-time dependent encoder and reservoir design in neu-
romorphic computing processors,” Microprocessors and Microsys-
tems, vol.46, pp.175–183, Oct. 2016.

[19] H. Jaeger, “Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the “echo state network” approach,” German
National Research Center for Information Technology, GMD Re-
port, vol.159, Oct. 2002.

[20] M. Munoz-Organero, “Outlier Detection in Wearable Sensor Data
for Human Activity Recognition (HAR) Based on DRNNs,” IEEE
Access, vol.7, pp.74422–74436, May. 2019.

[21] G. Cooper, I. Sheret, L. McMillan, L. McMillian, K. Siliverdis, N.
Sha, D. Hodgins, L. Kenney, and D. Howard, “Inertial sensor-based
knee flexion/extension angle estimation,” J. Biomechanics, vol.42,
no.16, pp.2678–2685, Dec. 2009.

[22] S.O.H. Madgwick, “An efficient orientation filter for inertial and
inertial/magnetic sensor arrays,” Technical report, University of
Bristol, UK, 2010.

Takuya Sakuma received the BE degree
from Keio University in 2020. He is currently a
master course student in Keio University.

Hiroki Matsutani received the BA, ME, and
Ph.D. degrees from Keio University in 2004,
2006, and 2008, respectively. He is currently an
associate professor in the Department of Infor-
mation and Computer Science, Keio University.
His research interests include the areas of com-
puter architecture and interconnection networks.

http://dx.doi.org/10.1109/TC.2020.2973631
http://dx.doi.org/10.1109/TC.2020.2973631
http://dx.doi.org/10.1109/TC.2020.2973631
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/2523813
https://www.ai.rug.nl/minds/pubs/
https://www.ai.rug.nl/minds/pubs/
https://www.ai.rug.nl/minds/pubs/
http://dx.doi.org/10.1109/COOLCHIPS49199.2020.9097631
http://dx.doi.org/10.1109/COOLCHIPS49199.2020.9097631
http://dx.doi.org/10.1109/COOLCHIPS49199.2020.9097631
http://dx.doi.org/10.1109/COOLCHIPS49199.2020.9097631
http://dx.doi.org/10.1214/aoms/1177732979
http://dx.doi.org/10.1214/aoms/1177732979
http://dx.doi.org/10.1016/S0166-4115(97)80111-2
http://dx.doi.org/10.1016/S0166-4115(97)80111-2
http://dx.doi.org/10.1016/S0166-4115(97)80111-2
http://dx.doi.org/10.1016/S0166-4115(97)80111-2
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1207/s15516709cog1402_1
http://dx.doi.org/10.1147/JRD.2019.2942288
http://dx.doi.org/10.1147/JRD.2019.2942288
http://dx.doi.org/10.1147/JRD.2019.2942288
http://dx.doi.org/10.1147/JRD.2019.2942288
http://dx.doi.org/10.1147/JRD.2019.2942288
http://dx.doi.org/10.1147/JRD.2019.2942288
http://dx.doi.org/10.1002/9781118591352
http://dx.doi.org/10.1002/9781118591352
https://dl.acm.org/doi/10.5555/2968618.2968694
https://dl.acm.org/doi/10.5555/2968618.2968694
https://dl.acm.org/doi/10.5555/2968618.2968694
http://dx.doi.org/10.1162/neco.1997.9.8.1735 
http://dx.doi.org/10.1162/neco.1997.9.8.1735 
http://dx.doi.org/10.1016/j.neunet.2020.02.016
http://dx.doi.org/10.1016/j.neunet.2020.02.016
http://dx.doi.org/10.1016/j.neunet.2020.02.016
http://dx.doi.org/10.1016/j.neunet.2020.02.016
http://dx.doi.org/10.1016/j.neunet.2020.02.016
http://dx.doi.org/10.1109/TNN.2006.880583
http://dx.doi.org/10.1109/TNN.2006.880583
http://dx.doi.org/10.1109/TNN.2006.880583
http://dx.doi.org/10.1109/TNN.2006.880583
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1016/j.neuron.2009.07.018
http://dx.doi.org/10.1145/2765491.2765531
http://dx.doi.org/10.1145/2765491.2765531
http://dx.doi.org/10.1145/2765491.2765531
http://dx.doi.org/10.1109/PATMOS.2014.6951899
http://dx.doi.org/10.1109/PATMOS.2014.6951899
http://dx.doi.org/10.1109/PATMOS.2014.6951899
http://dx.doi.org/10.1109/PATMOS.2014.6951899
http://dx.doi.org/10.1016/j.micpro.2016.03.009
http://dx.doi.org/10.1016/j.micpro.2016.03.009
http://dx.doi.org/10.1016/j.micpro.2016.03.009
http://dx.doi.org/10.1016/j.micpro.2016.03.009
https://www.ai.rug.nl/minds/pubs/
https://www.ai.rug.nl/minds/pubs/
https://www.ai.rug.nl/minds/pubs/
https://www.ai.rug.nl/minds/pubs/
http://dx.doi.org/10.1109/ACCESS.2019.2921096
http://dx.doi.org/10.1109/ACCESS.2019.2921096
http://dx.doi.org/10.1109/ACCESS.2019.2921096
http://dx.doi.org/10.1016/j.jbiomech.2009.08.004
http://dx.doi.org/10.1016/j.jbiomech.2009.08.004
http://dx.doi.org/10.1016/j.jbiomech.2009.08.004
http://dx.doi.org/10.1016/j.jbiomech.2009.08.004
https://www.samba.org/tridge/UAV/madgwick_internal_report.pdf
https://www.samba.org/tridge/UAV/madgwick_internal_report.pdf
https://www.samba.org/tridge/UAV/madgwick_internal_report.pdf

