
Performance Improvement of Federated Learning
Server using Smart NIC

Naoki Shibahara∗, Michihiro Koibuchi†, Hiroki Matsutani∗
∗Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522

Email: {shibahara,matutani}@arc.ics.keio.ac.jp
†National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

Email: koibuchi@nii.ac.jp

Abstract—Federated learning is a distributed machine learning
approach where local weight parameters trained by clients locally
are aggregated as global parameters by a server. The global
parameters can be trained without uploading privacy-sensitive
raw data owned by clients to the server. The aggregation on the
server is simply done by averaging the local weight parameters,
so it is an I/O intensive task where a network processing accounts
for a large portion compared to the computation. The network
processing workload further increases as the number of clients
increases. To mitigate the network processing workload, in this
paper, the federated learning server is offloaded to NVIDIA
BlueField-2 DPU which is a smart NIC (Network Interface Card)
that has eight processing cores. Dedicated processing cores are
assigned by DPDK (Data Plane Development Kit) for receiving
the local weight parameters and sending the global parameters.
The aggregation task is parallelized by exploiting multiple cores
available on the DPU. To further improve the performance, an
approximated design that eliminates an exclusive access control
between the computation threads is also implemented. Evaluation
results show that the proposed DPDK-based federated learning
server on the DPU with the approximation accelerates the
execution time by 1.39 times with a negligible accuracy loss
compared with a baseline server on the host CPU.

I. INTRODUCTION

Due to the proliferation of smartphones and Internet-of-
Things (IoT) devices, the volume of data generated in our
life is continuously increasing, and Artificial Intelligence (AI)
technologies to exploit such data are rapidly evolving. At
the same time, uploading personal data to servers increases
the concern about data privacy. To address this issue, feder-
ated learning [1] is a promising distributed machine learning
approach that does not upload privacy-sensitive raw data to
servers.

In the federated learning, clients download a model from
a server and train it locally. Then the trained weight param-
eters are sent to the server. The server aggregates the local
parameters and sends back the aggregated global parameters
to the clients. The weight parameters are exchanged between
the server and clients multiple times during the federated
learning. The communication workload on the server increases
as the number of clients increases or the size of the model
becomes larger. Nevertheless, the aggregation process is not
computationally heavy since it is simply averaging the local
parameters received from clients. Thus, it is an I/O intensive
task with a high network processing workload compared with
the computation.

To mitigate the network processing workload, in this pa-
per, the federated learning server is offloaded to NVIDIA

BlueField-2 DPU [2] which is a smart NIC (Network Interface
Card) that has eight processing cores. Dedicated processing
cores are assigned for receiving the local weight parameters
and sending the global parameters. The server is imple-
mented as user-space application with DPDK (Data Plane
Development Kit) [3] so that a network protocol stack of
Linux kernel is bypassed, resulting in a lower processing
latency and higher network throughput. The aggregation task
is parallelized by exploiting multiple cores available on the
DPU. To further improve the performance, an approximated
design that eliminates an exclusive access control between the
computation threads is implemented. The baseline server and
the approximated server are evaluated in terms of the execution
time and learning convergence to show the performance and
accuracy tradeoffs.

The rest of this paper is organized as follows. Section II
introduces background knowledge about the federated learn-
ing, DPDK, and smart NIC. Sections III and IV describe the
design and implementation of the proposed federated learning
server on the smart NIC, respectively. Section V evaluates it in
terms of the execution time and learning convergence. Section
VI summarizes this paper and mentions our future work.

II. BACKGROUND AND RELATED WORK

A. Federated Learning

Modern mobile devices such as smartphones are major
sources of valuable data that can enhance user experiences
while such personal data are privacy-sensitive. To obtain a
global model trained from such privacy-sensitive data owned
by clients without uploading them to the server, the federated
learning [1] has been extensively studied. Figure 1 illustrates
a basic federated learning system with a single server and
N clients. Each client trains its local model using its own
data and sends the trained local parameters to the server.
The server aggregates the local parameters to produce global
parameters, which are then sent back to the clients. Thus,
the clients can share their trained results by incorporating the
global parameters in their local parameters.

1) Federated Averaging: FedAvg (Federated Averaging) is
a typical federated learning algorithm, and it is shown in
Algorithm 1. First, weight parameters of the target model are
initialized. For each round, m clients are randomly selected,
where C is a probability that a client is selected. The selected
clients join the aggregation, while the others keep their local
weight parameters. In round t, a selected client k trains

Fig. 1. Basic federated learning system

its local parameters wk
t using its own local data, based on

the formula in line 13, to produce wk
t+1. The trained local

parameters wk
t+1 are sent to the server. The server averages

the received local parameters, based on the formula in line
8, to produce the aggregated global parameters wt+1. In
the algorithm, n is the total number of data samples, and
nk is the number of data samples owned by client k. The
global parameters wt+1 are sent back to the clients, and each
client updates its local parameters using the received global
parameters. These steps are repeated for T rounds to obtain
the final global and local parameters.

Algorithm 1 Federated Averaging [1]. K clients are indexed
by k. B is local minibatch size, E is number of local epochs,
and η is learning rate.

1: function EXECUTESERVER()
2: Initialize w0

3: for each round t = 1, 2, . . . do
4: m← max(C ·K, 1)
5: St ← (random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← CLIENTUPDATE(k,wt)

8: wt+1 ←
K∑

k=1

nk

n
wk

t+1

9: function CLIENTUPDATE(k,w) ▷ Run on client k
10: B ← (split Pk into batches of size B)
11: for each local epoch i from 1 to E do
12: for each batch b ∈ B do
13: w ← w − η∇ℓ(w; b)

2) Advanced Federated Learning Algorithms: In FedAvg
algorithm, clients replace their local parameters with the global
parameters entirely every round. It is effective when the
goal is to improve the global model accuracy for an entire
data distribution that all clients will encounter in future. In
reality, however, data distribution may differ depending on
client environments. For such non-i.i.d. (independently and
identically distributed) data, Per-FedAvg [4] and APFL [5] are
representative algorithms to improve the local model accuracy
for the local data distribution of each client. Although these
algorithms have a similarity to FedAvg algorithm at the point
that the global parameters are obtained by averaging local
parameters, clients update their local parameters through a
weighted average of both the local and global parameters.

Please note that the server-side averaging process of FedAvg
can also be used in these advanced algorithms.

B. DPDK
DPDK provides libraries and network drivers to accelerate

packet processing. More specifically, network processing is
executed as a user-space application that bypasses the network
protocol stack of OS kernel. Dedicated CPU cores are assigned
for receiving packets, on which the user-space applications are
polling the NIC to receive packets. This can reduce the over-
heads for context switching and data copying compared with
a network protocol stack of OS kernel triggered by interrupts,
resulting in a lower processing latency and higher network
throughput. Please note that utilization of CPU cores that are
polling the NIC is always 100 percent. In addition, the memory
access can be accelerated by utilizing hugepages supported by
Linux. Their sizes are larger than standard 4kB pages so that
TLB (Translation Lookaside Buffer) misses can be reduced.
Since they are statically allocated in a physical memory, page-
in and page-out overheads can also be eliminated.

There are some high-performance network processing
frameworks that support TCP/IP on top of DPDK. F-Stack
[6], DPDK-ANS [7], and mTCP [8] are open-source network
processing frameworks based on TCP/IP stack of FreeBSD on
top of DPDK. These frameworks assume the shared nothing
architecture, in which data are not shared between multiple
processing cores. In this case, incoming packets are distributed
to each processing core by Receive Side Scaling (RSS) of
NICs and then the packets are processed within the assigned
core. ZygOS [9] and Shenango [10] support a shared memory
so that multiple processing cores can share data. A task
scheduler that can distribute the workload to multiple cores
to balance their workload is also implemented. In this paper,
the federated learning server workload is predictable since
the number of clients and the model size are determined
beforehand. We can thus balance their workload by assigning
the same number of clients for each processing core.

C. Smart NIC
Smart NIC is a kind of NICs that have processing cores

to perform custom packet processing and routing control
functions. These tasks are typically executed by the CPU
of the host machine. By offloading them to the smart NIC,
the CPU workload of the host machine is reduced, so that
the host CPU can concentrate on the other user applications.
For example, VPNs (Virtual Private Networks) employ packet
encapsulation and encryption to ensure a secure data commu-
nication. In this case, adding encapsulation headers increases
the packet sizes, and the encryption and decryption increases
the computation overheads. In addition to the standard packet
processing and routing functions, intrusion detection from
external networks [11], data encryption/decryption, and data
compression/decompression can be offloaded to the smart
NICs. As the networking technology continues to evolve,
it becomes increasingly complex. Smart NICs have a good
potential to offload such network processing to the NIC and
reduce the CPU workload of the host machine.

In [12], various smart NIC products are evaluated in detail.
Generally, processing cores implemented on the smart NICs

are slower than those of host CPUs. Also, their L2/L3 caches
and DRAMs are not abundant. In [12], application charac-
teristics that can be efficiently offloaded to smart NICs are
analyzed, and a task scheduling that considers this insight is
proposed. In this paper, we focus on the aggregation process
of the federated learning server, in which a shared memory
that can store only a single set of global parameters is used
and its memory access pattern is straightforward. This suggests
that using smart NICs is a promising solution to offload the
federated learning server.

In this paper, we use NVIDIA BlueField-2 DPU
MBF2H332A-AENOT as a target smart NIC. It is comprised
of an SoC (System-on-Chip) that includes an 8-core ARM pro-
cessor running at 2.5GHz, 16GB DRAM, two 25Gbit Ethernet
(GbE) interfaces, and PCIe Gen4 interface. It is connected to
the network via the 25GbE interfaces and connected to the
host machine via the PCIe Gen4 interface. Operating systems
such as Linux is running on the DPU, and DPDK applications
can be executed on it.

In [13], a data augmentation task is offloaded to the DPU
in order to accelerate deep learning tasks by overlapping the
data augmentation performed on the DPU and other training
steps performed on the host CPU. Since the data augmentation
does not require a network processing and the DPU is used
as an additional computation resource, benefits of the 25GbE
interfaces of the DPU are not fully exploited. In this paper,
on the other hand, the federated learning server is offloaded
to the DPU as an I/O intensive task, so it can fully utilize the
benefits of smart NICs.

In [14] and [15], a host CPU workload is offloaded to
the DPU by exploiting the RDMA (Remote Direct Memory
Access) functionalities. Specifically, in [14], communication
primitives that support non-blocking point-to-point commu-
nication and collective communication are implemented on
the DPU. In [15], communication performance between DPU
and host CPU via PCIe and that of RDMA are studied. As a
case study, KVS (Key-Value Store) is implemented on DPU.
Specifically, a part of keys in the KVS is cached in local
DRAM of the DPU to accelerate the KVS application. Please
note that the federated learning server running on the DPU
in this paper is quite simple. It processes incoming packets
directly and returns the aggregated results to clients without
communicating with the host CPU via PCIe.

In this paper, we offload the aggregation process of feder-
ated learning onto the DPU. It is effective to reduce the CPU
workload of the host machine. Other than DPU, using FPGA
(Field Programmable Gate Array) based programmable NICs
is another solution to offload the CPU workload. However,
since Linux and development tools/libraries are available on
the DPU, the portability of software programs is high, which
is attractive especially for machine learning tasks.

III. FEDERATED LEARNING SERVER ON DPU

Figure 2 illustrates a federated learning system consisting of
a single server and clients. In this paper, the server is running
on the DPU. They are connected by a copper cable.

Fig. 2. Federated learning system where federated learning server is running
on DPU

A. Client Process
Each client has its local model and trains it with its

own local data. The local training is repeated several times,
and then the client sends the trained weight parameters to
the server via the 25GbE network. After the client receives
the aggregated global parameters from the server, it updates
its local parameters by substituting them with the received
global parameters. These steps are referred to as a “round” in
federated learning. By repeating these rounds, we can lower
the training error for the local data and share the local training
results to the other clients.

To exchange the weight parameters between the server and
clients, we use UDP as a lightweight transport layer protocol
as will be described more specifically in Section III-B3. It
is compared with a baseline implementation that uses TCP.
In both the cases, the client processes are implemented in
Python. They use socket APIs for the communication with
TCP or UDP via a TCP/IP protocol suite of the OS kernel.
In the case of packet loss, the missing global parameters are
complemented with the local parameters. In other words, the
missing part is left as the local parameters.

B. Server Process
The federated learning server receives local parameters from

clients and aggregates them based on Algorithm 1. That is, the
local parameters are averaged to produce global parameters.
The global parameters are then sent back to the clients. The
federated learning server is implemented in C++. The baseline
server uses socket APIs for the TCP communication via a
TCP/IP protocol stack of the OS kernel. The proposed server
running on the DPU uses UDP communication, and it is
implemented with DPDK. It directly accesses the NIC and
handles the UDP communication without using the protocol
stack of the OS kernel. It thus parses the Ethernet, IP, and UDP
headers of incoming packets and generates outgoing packets
in the DPU.

1) DPDK Model: DPDK applications can be modeled as
“Run to Completion” model or “Pipeline” model. In the Run
to Completion model, packet reception, packet processing, and
packet transmission steps are executed by a single logical CPU
core. On the other hand, they are partitioned and executed by
multiple logical cores in the Pipeline model. In the Run to
Completion model, the packet processing step becomes a bot-
tleneck if the processing is complicated and time-consuming,
resulting in a lower overall throughput. In this paper, we

Fig. 3. Multiple threads of server process on DPU

employ the Pipeline model that distributes the processing
steps to multiple processing cores in order to eliminate the
performance bottleneck.

2) Packet Processing: Figure 3 illustrates the server process
based on the Pipeline model. An RX thread, K Worker
threads, and a TX thread are connected via ring queues.
Each thread is executed on a dedicated processing core. Red
arrows indicate dequeueing of packets, while blue ones are
enqueueing of packets. These ring queues employ the Ring
library provided by DPDK for communication between the
threads. They enqueue and dequeue pointers of mbuf objects,
which represent packets, to exchange packets between these
threads. The RX thread polls the packet receiving queue of the
NIC. When a packet is received, it verifies the Ethernet and IP
headers of the packet to confirm that it is the packet coming
from a federated learning client. It also checks the source port
number in the UDP header and puts the packet into the RX
ring of the corresponding client. Additionally, the RX thread
sends acknowledgment packets to clients as will be described
in Section III-B3.

Worker thread i sequentially polls RX ring queues i, i +
K, i + 2K, Once a packet is retrieved from the RX ring
queue, local parameters are extracted from its payload and
added to a float array which has been initialized with 0. After
local parameters of all the clients have been added to the
float array, a single Worker thread divides each element of
the float array by the number of clients in order to calculate
element-wise averages of the local parameters (i.e., new global
parameters). Local parameters that are missing due to packet
loss are not included in the divisor. In other words, the number
of clients participating in the aggregation may differ depending
on the element of the global parameters. The other Worker
threads wait until the element-wise averages are calculated
using a spinlock mechanism.

After the averages are calculated, each Worker thread copies
the global parameters to payload of packets for clients, fills out
Ethernet, IP, and UDP headers of the packets, and puts them
into the TX ring. The TX thread polls the TX ring. Once a
packet is retrieved from the TX ring, it is enqueued to the
transmission port of the NIC and sent to the client. The TX
thread then releases the mbuf objects, in which the packet was
stored.

3) Lightweight Network Protocol: In DPDK, since a net-
work protocol stack of OS kernel is bypassed, a flow control
functionality has to be provided by the application layer.
A client process has two communication states: sending lo-

Fig. 4. Lightweight protocol for UDP communication

cal parameters and receiving global parameters. Similarly, a
server process has three states: receiving local parameters,
computation, and sending global parameters. To guarantee the
correct state transitions, a simple yet reliable network protocol
that uses acknowledgement packets is implemented in the
application layer. For example, to detect the completion of
local parameter reception, a server may be able to count the
total number of packets received. However, if a packet is lost,
the server may still be in the state of receiving local parameters
while the client has already finished sending local parameters
and has transitioned to the state of receiving global parameters.
In this case, the federated learning may stop.

To avoid such a situation, the clients send an acknowl-
edgement packet denoted as “END” to indicate the end of
transmission after sending the local parameters. The server
then responds to the clients with a response packet denoted
as “END ACK”. The client keeps sending END packets until
an END ACK packet is received, so that it can ensure that
the server has finished receiving the local parameters. The
client transitions to the state of receiving global parameters
after the reception of END ACK. In our implementation, two
types of control packets, namely START and END, and their
corresponding response packets, namely START ACK and
END ACK are used.

Figure 4 illustrates the communication protocol between a
client and a server. When the client completes its local training,
it sends a START packet to the server. Upon receiving a
START ACK packet from the server, the client sends local pa-
rameters and then an END packet. When an END ACK packet
is received from the server, the client terminates the state of
sending local parameters and transitions to the state of receiv-
ing global parameters. After receiving the global parameters,
when an END packet is received from the server, the client
responds with an END ACK packet. The client then replaces
the local parameters with the received global parameters, and
completes a single round of federated learning. Since there is
a possibility that the END ACK packet is lost, retransmitted
END packets can be handled for one second after the first
END packet is received. TCP also has a similar waiting period
when terminating a connection. RFC 793 defines this period
as twice the MSL (Maximum Segment Lifetime), which is

commonly two minutes. In our communication protocol, the
waiting period is set to this minimum value, though this did
not affect the evaluation results in this paper.

When the server receives a START packet, it responds with
a START ACK packet and then receives local parameters until
an END packet is received from the client. As described in
Section III-B2, the RX thread enqueues incoming packets to
the RX rings immediately after receiving them. Worker threads
poll the RX rings to retrieve the packets as soon as they
arrive, and then the element-wise addition of the received local
parameters is executed. That is, the reception and addition
of local parameters are performed in parallel until an END
packet is received. When an END packet is received, the server
waits until the Worker threads process all the packets stored
in the RX rings and then terminates the state of receiving
local parameters. The server then transitions to the state of
computation by responding with an END ACK packet, so
that it performs element-wise division to the float array to
obtain the global parameters. When the RX thread receives
an END packet, it puts an END ACK packet directly into the
TX ring without passing the packet to the Worker thread. If
the END ACK packet is lost at this point, the RX thread can
receive another END packet retransmitted by the client while
the server has transitioned to the state of computation. This
implementation can reduce the number of context switches
between these threads. After the element-wise division is
completed, the server sends the global parameters to each
client. The global parameters are sent in the same way as
the local parameters. A single round is then completed once
an END ACK packet is received from the clients.

4) Elimination of Exclusive Access Control: In this server
design, multiple Worker threads running on multiple process-
ing cores execute the element-wise addition on the same float
array stored in the shared memory of the DPU. There is a
possibility of write-write conflicts (e.g., lost update) between
multiple Worker threads. To avoid the conflicts, an exclusive
access control mechanism is typically required for the threads
to ensure precise computation results. To further improve the
performance, in this paper an approximated federated learning
server that eliminates this exclusive access control is also
implemented. In Section V, the baseline server and the ap-
proximated server are evaluated in terms of the execution time
and federated learning convergence to show the performance
and accuracy tradeoffs between them.

IV. IMPLEMENTATION DETAILS

A. Client Process
Figure 5 illustrates the packet format for the UDP commu-

nication. Each client is identified by source port number of
the UDP header. In the client process, the local parameters
are extracted from the trained local model and converted to
numpy.float32. Then, they are serialized and transmitted to
the server. To detect packet loss and guarantee the ordered
data transfer, a 4B index number of packets is added to the
beginning of each payload. The payload size without the index
number is 1468B if we assume MTU (Maximum Transmission
Unit) is 1500B and IP and UDP headers are 20B and 8B,
respectively. In this case, each UDP packet can convey 367
weight parameters.

Fig. 5. Packet format for UDP communication

B. Server Process
As mentioned in Section II-C, we use NVIDIA BlueField-

2 DPU MBF2H332A-AENOT as a platform of the proposed
DPDK-based federated learning server. In this section, the
baseline and proposed servers are described below.

1) Baseline TCP Server: Here, we describe a baseline
implementation of federated learning server using TCP. It
uses socket APIs provided by OS kernel for communication.
It is compared with the proposed DPDK server using UDP
in Section V. In the TCP communication, MSS (Maximum
Segment Size) is set to 1460B to comply with MTU of the
UDP communication, which is 1500B. The overall packet
length including the Ethernet header is 1514B in both cases.

The baseline TCP implementation runs either on the host
CPU or the 8-core processor of DPU. When a TCP con-
nection request is received from a client, a new thread is
created through the use of the standard library std::thread.
The assignment of threads to cores is done by the OS kernel.
Each thread receives local parameters from the client and
subsequently performs the element-wise addition of the local
parameters to the float array. Only a single thread executes
the element-wise division to produce global parameters, while
the other threads wait for the division by using std::mutex and
std::condition variable, which are provided by the standard
library.

2) DPDK Server: In the proposed DPDK server imple-
mentation, the global parameters are declared as a con-
ventional float array. By employing the operator+= of
std::atomic ref<float>, which is an atomic reference to a float
variable implemented in C++20, an exclusive access control
is enforced only during the execution of the element-wise
addition. On the other hand, since the division operation is
carried out by a single representative Worker thread, it is
executed without using std::atomic ref<float>. As mentioned
in Section III, if the exclusive access control between these
threads is eliminated, the precise averages cannot be guar-
anteed. We implement such an approximated server without
using std::atomic ref<float>. It is compared with the baseline
DPDK server that uses the exclusive access control in terms
of the speed and learning convergence.

V. EVALUATIONS

A. Evaluation Environment
Table I shows the evaluation environment of server and

client machines. The DPU is attached to the server machine via
PCIe Gen4 interface as a NIC. The DPU and client machine
are connected by a 2m 25GbE direct attach copper cable. The
server process is executed either on the DPU or the server
machine. When the server process is executed on the DPU,

TABLE I
SPECIFICATION OF SERVER MACHINE, DPU, AND CLIENT MACHINE

Server Machine DPU Client Machine
OS Ubuntu 20.04 Ubuntu 20.04 Ubuntu 20.04
CPU Intel Core i7-11700 ARM Cortex-A72 Intel Core i7-10700
RAM 16 GB 16 GB 32 GB
NIC NVIDIA BF-2 DPU − Intel XXV710-DA2

packets coming from the client machine to the DPU’s physical
interface are forwarded to the ARM processor of the DPU. In
this case, federated learning packets are not forwarded to the
server machine (i.e., host CPU) since the aggregation process
is entirely offloaded onto the DPU. On the other hand, when
the server process is executed on the host CPU, the packets
are forwarded from the DPU’s physical interface to the host
machine’s interface.

In this experiment, the dataset is CIFAR-10, which consists
of 50,000 training samples and 10,000 test samples. The
number of client processes is ten. The training samples are
partitioned to the ten client processes equally, so each client
process has 5,000 i.i.d. training samples. The global model is
tested with the 10,000 test samples. The model architecture
is CNN consisting of four convolutional layers and two fully
connected layers 1. The number of parameters is about two
million, and each parameter is represented as a 32-bit float.

The server process is executed on the 8-core ARM processor
of the DPU, in which two cores are dedicated to the RX
and TX threads, respectively. Worker threads are executed on
five cores. Since there are ten clients, each thread handles
two clients. One core is left for other tasks including the
OS task scheduling. The client processes are implemented
with Python 3.11.4, Pytorch 2.0.1, and torchvision 0.15.2. The
server process is implemented with C++ and DPDK 20.11.3,
and compiled with -O3 optimization level.

B. Evaluation Results
As shown in Figure 4, a client sends a START packet to a

server, and then it receives an END packet from the server.
The proposed federated learning server is evaluated in terms of
the latency to receive the END packet after the START packet
is sent. This is the server’s response time for the aggregation
which is observed by the client.

Figure 6 shows the evaluation results of the following six
server implementations.

1) Server running on host CPU using TCP/IP protocol stack
with exclusive access control

2) Server running on host CPU using TCP/IP protocol stack
without exclusive access control

3) Server running on DPU using TCP/IP protocol stack
with exclusive access control

4) Server running on DPU using TCP/IP protocol stack
without exclusive access control

5) Server running on DPU using DPDK with exclusive
access control

6) Server running on DPU using DPDK without exclusive
access control

1Conv(32, 3) → Relu → Conv(64, 3) → Relu → Maxpool(2) → Conv(128,
3) → Relu → Conv(256, 3) → Relu → Maxpool(2) → FC(256) →
Dropout(0.5) → FC(10) → Softmax(10)

Fig. 6. Server response time measured in client

Fig. 7. Server execution time measured in server

In addition, these servers are evaluated in terms of the
latency to complete the parameter aggregation after a START
packet is received. Figure 7 shows the evaluation results.
The blue bar shows the receiving time of local parameters,
which means the latency to receive the END packet after the
START packet is received. Then, the element-wise addition
of received local parameters and the element-wise division of
accumulated local parameters are executed. The red bar shows
the computation time for the addition and division. Please
note that Figure 7 shows the latencies measured at the server
side; so the transmission time of the global parameters is not
included. The complete latencies including the transmission
time are shown in Figure 6.

Regarding (1) and (3), although they are the same program,
the program execution on the DPU is much slower than that
on the CPU. Especially, the computation time (red part) is
increased in the DPU since processor performance of DPU
is lower than that of the host CPU. Regarding (3) and (4),
their difference is the exclusive access control. Eliminating
the exclusive access control speeds up the computation time
of global parameters by 6.66 times. The comparison between
(1) and (2) also shows a similar tendency while the speedup
is smaller than that on the DPU. Regarding (3) and (5), their
difference is the implementation of the communication; (3)
uses a standard TCP/IP stack while (5) uses the proposed
DPDK-based optimized communication. Using the DPDK-
based optimized communication, the receiving time of local
parameters at server is improved by 1.65 times, and the
aggregation response time is improved by 1.25 times from

Fig. 8. Training convergence (rounds vs. test loss)

the client’s view. The server computation time for global
parameters is also slightly improved (i.e., 1.09 times speed up).
This is because a part of computation (red part) is overlapped
with the parameter reception (blue part) as mentioned in
Section III-B3 and thus reduced. Utilizing hugepages may
also contribute the performance improvement. The proposed
approach (6) combines the elimination of exclusive access
control and use of the DPDK-based optimized communication
implemented on the DPU. The proposed approach improves
the aggregation response time by 3.93 times compared with
(3). It also improves the response time by 1.39 times compared
with (1) which is executed on the host CPU.

C. Training Convergence
Figure 8 shows training curves of the six approaches at a

client. We conducted the same experiments five times. The
X-axis represents the rounds, while the Y-axis represents the
average and standard deviation of the test loss. Although the
approximated computation on the baseline CPU implementa-
tion introduces fluctuations in the training curve as shown in
(2), the negative impact of the approximation is small in (4)
and negligible in (6). Since the performance and parallelism
of the host CPU are higher than those of DPU, it is expected
that (2) introduces more write-write conflicts and fluctuations.
Although the DPDK-based UDP communication introduces
packet loss especially in the global parameter transfer from
the server to clients (e.g., 4.68% in (6)), since our lightweight
protocol can handle the packet loss, the accuracy loss is lim-
ited. As a result, the training curve of the proposed approach
(6) is very close to the CPU baseline (1).

VI. SUMMARY

Although the federated learning algorithm is an emerging
research topic and continuously becoming sophisticated, the
major computation task at the server side is typically averaging
the received local parameters. In this I/O intensive task, the
network processing accounts for a large portion compared to
the computation. In this paper, we implemented the aggre-
gation process of the federated learning server on NVIDIA
BlueField-2 DPU as a smart NIC. Although offloading the

federated learning server on the DPU can mitigate the host
CPU workload, a simple offloading increases the execution
time compared with that on the host CPU due to its lower
processor performance. Our approach thus combines the elim-
ination of exclusive access control and use of the DPDK-
based lightweight communication implemented on the DPU.
The experiment results showed that the proposed approach
significantly improves the aggregation response time compared
with the DPU baseline and it is even higher than the host
CPU baseline by 1.39 times. Training curve of the proposed
approach using CIFAR-10 dataset on the DPU showed a
similar learning convergence to the CPU baseline. Further
investigations on more practical environments using non i.i.d.
datasets are our future work.

Acknowledgements This paper is based on results obtained
from “Research and Development Project of the Enhanced In-
frastructures for Post 5G Information and Communication Sys-
tems” JPNP20017)), commissioned by the New Energy and
Industrial Technology Development Organization (NEDO).

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), Apr. 2017, pp. 1273–
1282.

[2] “NVIDIA BlueField-2 DPU,” https://www.nvidia.com/content/dam/en-
zz/ja/Solutions/Data-Center/documents/bluefield-2-dpu-datasheet-jp.pdf.

[3] “Data Plane Development Kit,” https://www.dpdk.org.
[4] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized Federated Learn-

ing with Theoretical Guarantees: A Model-Agnostic Meta-Learning
Approach,” in Proceedings of the International Conference on Neural
Information Processing Systems (NeurIPS), Dec. 2020, pp. 3557–3568.

[5] Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive Personalized
Federated Learning,” arXiv:2003.13461, Nov. 2020.

[6] “F-Stack,” http://www.f-stack.org.
[7] “DPDK-ANS,” https://github.com/ansyun/dpdk-ans.
[8] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and

K. Park, “mTCP: a Highly Scalable User-level TCP Stack for Multicore
Systems,” in Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Apr. 2014, pp. 489–502.

[9] G. Prekas, M. Kogias, and E. Bugnion, “ZygOS: Achieving Low Tail
Latency for Microsecond-Scale Networked Tasks,” in Proceedings of
the ACM Symposium on Operating Systems Principles, Oct. 2017, pp.
325–341.

[10] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving High CPU Efficiency for Latency-sensitive Dat-
acenter Workloads,” in Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Feb. 2019, pp.
361–378.

[11] M. Wu, H. Matsutani, and M. Kondo, “ONLAD-IDS: ONLAD-Based
Intrusion Detection System Using SmartNIC,” in Proceedings of the
International Conference on High Performance Computing and Com-
munications (HPCC), Dec. 2022, pp. 546–553.

[12] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading Distributed Applications onto SmartNICs Using IPipe,” in
Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM), Aug. 2019, pp. 318–333.

[13] A. Jain, N. Alnaasan, A. Shafi, H. Subramoni, and D. K. Panda, “Accel-
erating CPU-based Distributed DNN Training on Modern HPC Clusters
using BlueField-2 DPUs,” in Proceedings of the IEEE Symposium on
High-Performance Interconnects (HOTI), Aug. 2021, pp. 17–24.

[14] K. K. Suresh, B. T. Michalowicz, B. Ramesh, N. Contini, J. Yao, S. Xu,
A. Shafi, H. Subramoni, and D. K. Panda, “A Novel Framework for
Efficient Offloading of Communication Operations to Bluefield Smart-
NICs,” in Proceedings of the IEEE International Parallel & Distributed
Processing Symposium (IPDPS), May 2023, pp. 123–133.

[15] X. Wei, R. Cheng, Y. Yang, R. Chen, and H. Chen, “Characterizing Off-
path SmartNIC for Accelerating Distributed Systems,” in Proceedings
of the USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), Jul. 2023, pp. 987–1004.

