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Abstract—A fast and reliable LiDAR (Light Detection and
Ranging) SLAM (Simultaneous Localization and Mapping) sys-
tem is the growing need for autonomous mobile robots, which are
used for a variety of tasks such as indoor cleaning, navigation,
and transportation. To bridge the gap between the limited pro-
cessing power on such robots and the high computational require-
ment of the SLAM system, in this paper we propose a unified
accelerator design for 2D SLAM algorithms on resource-limited
FPGA devices. As scan matching is the heart of these algorithms,
the proposed FPGA-based accelerator utilizes scan matching
cores on the programmable logic part and users can switch
the SLAM algorithms to adapt to performance requirements
and environments without modifying and re-synthesizing the
logic part. We integrate the accelerator into two representative
SLAM algorithms, namely particle filter-based and graph-based
SLAM. They are evaluated in terms of resource utilization,
processing speed, and quality of output results with various
real-world datasets, highlighting their algorithmic characteristics.
Experiment results on a Pynq-Z2 board demonstrate that scan
matching is accelerated by 13.67–14.84x, improving the overall
performance of particle filter-based and graph-based SLAM by
4.03–4.67x and 3.09–4.00x respectively, while maintaining the
accuracy comparable to their software counterparts and even
state-of-the-art methods.

Index Terms—SLAM, Scan Matching, FPGA

I. INTRODUCTION

LiDAR (Light Detection and Ranging) SLAM (Simulta-
neous Localization and Mapping) is the task for creating a
precise, globally consistent map of a surrounding environment
and estimating a robot pose inside the map using a sequence
of LiDAR scans (Figure 1). SLAM plays a central role for
positioning systems on autonomous robots especially in GPS-
denied scenarios, and becomes the basis of many useful
applications such as house cleaning, navigation in offices,
and transportation in warehouses. Though LiDAR SLAM is
a relatively mature and well-established technique, it requires
high-end CPUs and even GPU accelerations due to the high
computational complexity of the state-of-the-art methods [1]–
[5]. This hinders the use of SLAM in indoor mobile robots,
due to their low computational capability and limited power
supply. Developing an embedded FPGA-based SLAM system
that achieves both energy efficiency and real-time performance
is the promising solution to tackle this problem, and should
bring significant benefits to both industry and household.

A number of FPGA-based SLAM accelerators have been
proposed in the literature [6]–[12]. Boikos et al. [9] proposes
the accelerator for direct tracking in LSD-SLAM, which
estimates a camera pose by minimizing per-pixel intensity

Fig. 1. Grid map and robot trajectory (red line) obtained using our proposed
FPGA-based SLAM accelerator (left: particle filter-based SLAM and Intel
Research Lab dataset, right: graph-based SLAM and Revo LDS dataset)

differences between two images. Their implementation using
Zedboard (Xilinx Zynq-7020 SoC) achieves 22.7fps at the
input resolution of 320x240 px, which is the 10x speedup
compared to the dual-core ARM Cortex-A9 CPU. Gautier et
al. [10] implements the depth fusion and ray casting parts
in InfiniTAM algorithm on Terasic DE1 SoC (Cyclone V),
and achieves the 3.16x speedup (0.49 to 1.55fps) at 320x180
compared to Cortex-A9. Liu et al. [11] devises the rotationally-
invariant hardware-friendly feature descriptor and accelerates
the feature detection and matching in ORB-SLAM using Xil-
inx Zynq XCZ7045 SoC (Kintex 7), resulting in 31x speedup
at 640x480 compared to Cortex-A9. These researches focus
on Visual SLAM methods which use cameras as the primary
sensor. LiDAR is also predominantly employed in SLAM
and provides robust, accurate, wide field-of-view information
about the surrounding environment, enabling reliable SLAM
systems [13] [14]. Despite the importance and widespread use
in both industry and household, only a few studies have con-
sidered the hardware acceleration of LiDAR SLAM to address
its high computational complexity and memory footprint.

In this paper, we propose an efficient accelerator design
for 2D LiDAR SLAM methods targeting low-cost FPGA
SoC (Figure 4). Based on the profiling results, we choose
to implement the scan matching part on the FPGA fabric
to maximize the overall system performance. Our design
is modular in a way that it can be integrated to various
LiDAR SLAM methods, which allows users to choose the
most suitable one according to performance requirements
and environmental characteristics. Specifically, we develop an



accelerator for Correlative Scan Matching (CSM) proposed by
Olson et al. [15], since it strikes a balance between computa-
tional efficiency and simplicity. To parallelize the algorithm
and further improve the efficiency, we modify the original
CSM algorithm and also perform design optimizations, such as
data reordering and loop interchanging. The proposed design
is implemented using Pynq-Z2 board and applied to two rep-
resentative SLAM approaches: particle filter-based and graph-
based SLAM. Experimental results using real-world datasets
confirm that the performance of both methods is effectively
boosted while maintaining the accuracy, and also highlight the
trade-off between computational cost and accuracy in these
methods, which would support our unified design concept.

The novelty of this paper lies in (1) deriving a hardware-
friendly robust scan matching algorithm, and (2) proposing a
unified accelerator design which is applicable to various 2D
LiDAR SLAM methods. This paper is outlined as follows: the
next section presents a brief explanation of the two SLAM
approaches mentioned above along with scan matching. Mod-
ifications to CSM algorithm and design optimizations are de-
scribed in Section III. Section IV illustrates the implementation
details and shows the evaluation results in terms of resource
utilization, power consumption, throughput, and quality of
outputs. Section V concludes this paper.

II. PRELIMINARIES

SLAM methods are often divided into two main cate-
gories: particle filter-based SLAM (PF-SLAM) and graph-
based SLAM, which are described in the following sections.

A. Particle Filter-based SLAM (PF-SLAM)

PF-SLAM [16]–[18] uses a set of particles, each of which
carries a hypothesis about robot trajectory and map. To filter
out particles with less probable hypotheses, importance weight
is computed by performing scan matching for each particle.
Scan matching is the process to estimate particle’s pose by
maximizing the overlap between particle’s map and scan,
as shown in Figure 2. It is the most suitable candidate for
hardware acceleration, as it usually becomes a bottleneck,
and the computation for each particle is independent, i.e.,
completely parallelizable [19]–[22].

B. Graph-based SLAM

In graph-based SLAM [23]–[25] pose graph is used as a
central data structure, whose node represents a robot pose
and edge defines a relative pose between two nodes. Edges
represent either odometry or loop constraint: the former is
incrementally created in the frontend scan matching, where
a new scan is aligned with the latest submap to estimate
the current robot pose (submap is created from a series of
scans within a certain time window). The latter is inserted
after a successful loop detection in backend, which involves
scan matching between recent scans and old submaps to
detect whether a robot is revisiting previously explored areas.
Backend then optimizes the pose graph to refine the entire
trajectory estimate. Graph-based SLAM only maintains the
most plausible estimate of trajectory and map, and explicitly

Fig. 2. Updating a robot pose ξ by scan matching. Blue circles represent scan
points projected onto a map M, and squares filled with darker color indicate
grid cells with higher occupancy probabilities. Scan matching aligns a scan
S with a map M and seeks a robot pose ξ∗ (right), by maximizing a score
s(ξ,M,S). The score is obtained by summing up occupancy probabilities of
grid cells which correspond to scan points. If a scan is successfully aligned,
an occupancy probability for each scan endpoint is closer to one (blue circles
lie on darker cells), resulting in a higher score.

performs loop detections to improve accuracy. This contributes
to the reduced computational cost compared to PF-SLAM. As
explained above, both frontend and backend rely heavily on
scan matching, which motivates the hardware acceleration of
it in graph-based SLAM as well as PF-SLAM [26]–[28].

C. Scan-matching

The aim of scan matching is to find a scan pose ξ∗ which
maximizes a matching score s(ξ,M,S). Score correlates to
the quality of an alignment between mapM and scan S under
the current pose estimate ξ. Scan is a set of observed points
S = {z1, . . . , zN}, where each point zi is defined by a range
and an angle (ri, θi) from the sensor origin. Grid map M
partitions the environment into equally-sized grid cells with a
resolution of r, each of which stores a probability that it is
occupied by an obstacle. We denote the occupancy probability
at a cell (i, j) as M(i, j). Score is evaluated by projecting
scan points onto grid cells and summing up their associated
occupancy probabilities, as depicted in Figure 2.

In scan matching, score s needs to be evaluated for each
solution candidate ξ, which involves coordinate transforma-
tions for every scan point and memory accesses to grid cells.
Memory access patterns for grid maps are usually irregular
and unpredictable, since there is no assumption for the shape
of input scans. Thus, scan matching is both compute- and data-
intensive process and becomes a major bottleneck in SLAM
applications. We aim to address this by FPGA-based scan
matching acceleration and enable SLAM on low-power edge
devices. In the following section, we describe the Correlative
Scan Matching (CSM) algorithm [15] and highlight its ad-
vantages in terms of hardware efficiency compared to other
existing methods.

D. Correlative Scan Matching (CSM)

Algorithm 1 summarizes the CSM algorithm [15]. From a
discrete search window of size (2wx, 2wy, 2wθ), CSM finds
the best solution (n∗

x, n
∗
y, n

∗
θ) and obtains the scan pose ξ∗

(line 16). For any candidate (nx, ny, nθ), its associated pose



Fig. 3. Example of fine M (left) and coarse M′ (right) grid maps

is computed as ξ0 + [r · nx, r · ny, δθ · nθ], where r and δθ
denote the step sizes along x, y and θ directions. ξ0 is the
pose at the search window center (i.e., nx, ny, nθ = 0).

The algorithm is basically a special case of Branch-and-
Bound (BB) [29] [1] and utilizes two-level resolution grid
maps (i.e., coarse map M′ and fine map M, Figure 3). The
coarse mapM′ is computed from the input mapM using the
sliding window maximum operation (line 1) as follows:

M′(i, j) = max
i′,j′∈[0,1,...,w−1]

M(i+ i′, j + j′). (1)

Each cell in M′ contains a local maximum within a corre-
sponding small region (of w × w cells) in M.

The outermost loop (line 4) iterates over θ. For each angle
nθ, CSM projects scan points onto grid cells and computes
the set of discrete indices I = {(i1, j1), . . . , (iN , jN )} based
on the pose ξ0 + [0, 0, δθ · nθ]. CSM then performs coarse
matching (lines 6-10) using M′, i.e., it evaluates scores s′

for all points (n′
x, n

′
y, nθ) in a coarse search grid:

s′(n′
x, n

′
y, nθ) =

∑N
k=1M′(ik + n′

x, jk + n′
y). (2)

Substitution of (1) into (2) reveals that the score s′(n′
x, n

′
y, nθ)

is the upper-bound of scores (Equation 3) in the w×w search
space starting from (n′

x, n
′
y). This allows the pruning at line

10 and improves the algorithm efficiency. As a result, CSM
is able to identify the region of interest that contains a global
optimum ξ∗, and rule out a large part of the search space.

In fine matching (lines 11-15), a score s for each point
(nx, ny, nθ) in the w × w region starting from (n′

x, n
′
y, nθ)

is evaluated using the fine map M, and the current solution
(n∗

x, n
∗
y, n

∗
θ), s

∗ is updated:

s(nx, ny, nθ) =
∑N

k=1M(ik + nx, jk + ny). (3)

Throughout the paper, we set to r = 5cm and w = 8. In
this setting, coarse matching sweeps the entire search space
at r · w = 40cm resolution, and fine matching tries to find
the optimal solution from w2 = 64 candidate points equally
spaced 5cm apart inside the area of size 40 × 40cm. As
apparent in line 16, CSM estimates translational and rotational
components of the pose ξ∗ at r = 5cm and δθ rad accuracy.

As shown above, CSM is the simplified version of BB and
is classified as a non-iterative method. Unlike BB counterparts,
which use multi-resolution maps and tree data structures, CSM
only requires one mapM′ to be precomputed and works with-
out any complex data structure as evident in Algorithm 1. This
reduces the preprocessing overhead and resource consump-
tions in exchange for a slight efficiency loss. Compared to

Algorithm 1 Correlative Scan Matching (CSM)
Require: M, S, ξ0, (wx, wy, wθ), r, δθ, w
Ensure: Optimal pose ξ∗, score s∗

1: Compute coarse map M′ from M (Eq. 1)
2: s∗ ← −∞, (n∗

x, n
∗
y, n

∗
θ)← (−wx,−wy,−wθ)

3: Compute ŵx, ŵy such that 2wx = w · ŵx, 2wy = w · ŵy

4: for nθ = −wθ, . . . , wθ do
5: Compute indices I from S and ξ0 + [0, 0, δθ · nθ]

▷ Coarse matching
6: for n′

y = −wy,−wy + w, . . . ,−wy + (ŵy − 1)w do
7: for n′

x = −wx,−wx+w, . . . ,−wx+(ŵx−1)w do
8: s′ ←

∑N
k=1M′(ik + n′

x, jk + n′
y) (Eq. 2)

9: if s′ ≤ s∗ then
10: Continue

▷ Fine matching
11: for ny = n′

y, . . . , n
′
y + w − 1 do

12: for nx = n′
x, . . . , n

′
x + w − 1 do

13: s←
∑N

k=1M(ik + nx, jk + ny) (Eq. 3)
14: if s > s∗ then
15: s∗ ← s, (n∗

x, n
∗
y, n

∗
θ)← (nx, ny, nθ)

16: return s∗, ξ∗ = ξ0 + [r · n∗
x, r · n∗

y, δθ · n∗
θ]

iterative methods like hill-climbing [30] or Gauss-Newton [31]
[32], which tend to be trapped in local optima, CSM does not
depend on initial guesses and guarantees the global optimality
of the solution. From the above considerations, we choose to
use CSM in our implementation, since it is robust, hardware-
friendly, and strikes a balance between algorithm simplicity
and efficiency. We describe the design and implementation of
our FPGA-based CSM core in the next section.

III. DESIGN OPTIMIZATION

A. Overview of the CSM Core Design

Figure 4 illustrates the block diagram of our board-level
implementation. The programmable logic (PL) part contains
two CSM cores, each of which independently performs CSM
algorithm upon the request from the Zynq processing system
(PS). CSM is performed by the following three steps: (1) PS
places the input data (scan S and mapM) into the contiguous
DRAM buffer. (2) PS then transfers the input to the CSM
core via Direct Memory Access (DMA) and starts the CSM
core. (3) After the completion, PS receives the result (pose ξ∗

and matching score s∗) through the DMA and passes them
to the downstream SLAM modules. Importantly, the design
is independent from the choice of underlying 2D LiDAR
SLAM methods, and users can switch to different suitable
methods (e.g., PF-SLAM and graph-based SLAM) to adapt
to the environments and performance requirements without
modifying and re-synthesizing the design.

Our design conforms to the AXI4-Stream protocol and
uses one 64-bit high-performance (HP) port for each DMA
controller for the high-speed burst transfer between DRAM
and on-chip block RAM (BRAM) (blue arrows in Figure 4).
The control registers in DMA controllers and CSM cores



serve as the interface to the PS (red arrows in Figure 4). PS
writes to these registers through the AXI4-Lite protocol and
memory-mapped I/O to configure the physical address range
of the buffer to be transferred, and to specify the algorithmic
parameters of CSM (e.g., wx, wy, wθ, w in Algorithm 1).

CSM 
Core 0

M

DMAC 0

S

MS

M

S

ARM 
Cortex-A9

DRAM

GP Port

HP Port 0

HP Port 1

M

S

S

CSM 
Core 1

M

DMAC 1

S

MS

M

S

S

S

Processing system (PS) Programmable logic (PL)

AXI4-Stream 
(Input, output)

AXI4-Lite 
(Control registers, parameters) AXI Interconnect

Fig. 4. Block diagram of our implementation

B. Details of the CSM Core Design

Our CSM core is comprised of a set of modules: (i) main
controller, (ii) sliding window maximum, (iii) floating-point to
fixed-point, (iv) optimizer, (v) scan discretization, (vi) coarse
matching, and (vii) fine matching. Figure 6 illustrates the
data flow and interactions between these modules inside the
core. The functionality of each module is outlined as follows:
Module (i) reads the incoming data and configurations and
controls the other modules.

Module (ii) retrieves the quantized grid map valuesM from
the AXI4-Stream interface and stores them to the BRAM
buffer (Fine map in Figure 6). It simultaneously applies a
sliding window maximum filter (Equation 1) to the grid map
values M to obtain a low-resolution grid map M′, which
is stored to another BRAM buffer (Coarse map in Figure
6). The module retrieves map values in a row-wise order,
stores column-wise maxima to a temporary cache (of size
320 columns × w rows), and then computes M′ by taking
row-wise maxima of values stored in the cache. In our design,
each 64-bit data packet coming from the streaming interface
contains eight consecutive map values in 8-bit integer format
as shown in Figure 5. Module (iii) extracts two 32-bit floating-
point values (range r and angle θ of a scan point z) from a
64-bit data packet (Figure 5), converts them to the 32-bit fixed-
point values, and fills the scan buffer. The scan buffer (Figure
6) stores up to 512 range-angle pairs, i.e., N ≤ 512.

The optimizer module (iv) manages the entire process of the
CSM (Algorithm 1) using submodules (v)-(vii). For a given
orientation nθ, the discretization module (v) computes the grid
cell indices corresponding to scan points (denoted as I in
Section II-D) and writes them back to the indices buffer. The
coarse (vi) and fine (vii) matching modules evaluate solution
candidates (Equations 2, 3) in parallel using the discretized
scan indices and grid maps M,M′ located in the BRAM
buffer. After the matching, the optimizer module (iv) returns
back the optimal solution n∗

x, n
∗
y, n

∗
θ along with the score

Range Angle 

1 2 3 4 5 6 7 8

FUnused

32-bit 32-bit

8 8 8 8 8 8 8 8

63-bit 1

Scan

Grid map

Flag

Input

Output

Score Solution 

32-bit 32-bit

Solution Solution 
Solution

and score

Fig. 5. Input and output packet formats for data transfer between PS-PL

s∗ through the AXI4-Stream interface (Figure 5). The fol-
lowing Sections III-C-III-F describe the design optimizations
employed to exploit the inherent parallelism of CSM and
realize the implementation on resource-constrained low-power
FPGAs.
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map

Coarse 
map
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CSM 
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BRAM

S
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fixed-pointM

S

AXI4-
Lite

AXI4-
Stream

Controls Reads Writes

Fig. 6. Block diagram of the CSM core

C. Tuning the Grid Map Buffer Size
In the matching step (lines 8, 13 in Algorithm 1), the

number of grid map accesses is 2ŵxŵywθ

(
1 + w2

)
N in

the worst case, which reaches tens of millions in a typical
setting. In addition to this, as mentioned in Section II-C, score
evaluations (Equations 2, 3) exhibit irregular and unpredictable
memory access patterns, which decrease the effectiveness of
prefetching grid map values. Reading only a necessary part of
a grid map from DRAM and storing it to the small BRAM
buffer will also degrade the performance due to the repetitive
small data transfers from DRAM to BRAM. This necessitates
a BRAM storage for the entire map to minimize the memory
access latency and the number of data transfers.

Storing the entire map on BRAM is, however, also infeasi-
ble, since it exhausts BRAM resources especially on small
FPGA devices and increases a transfer overhead. The grid
map resolution needs to be fine enough for the precise pose
estimation (r = 0.05m in this paper), and contains tens of
thousands of grid cells as a result. For instance, grid maps in
Figure 3 contain 102,400 cells to cover 20.0× 12.8m area.

The proposed CSM core limits the size of grid maps up
to 320 × 320 cells or 16 × 16m, which is sufficiently large
considering the typical indoor environment (e.g., office). From
this limitation, the upper-bound of search space size becomes



16 × 16m (i.e., 2wx, 2wy ≤ 320 and ŵx, ŵy ≤ 40). Only a
region visible from a LiDAR is transferred to the core, which
is reasonable considering the characteristics of rotating LiDAR
sensors. Since the measurement range is upper-bounded, only
a fraction of the map around the current sensor position is
necessary for matching: the other remaining part distant from
the sensor can be omitted. In the matching modules (vi)-(vii),
scan points outside the boundary of trimmed grid maps are
just ignored and not considered in the score evaluation.

Grid map values are also quantized to 6-bit (64 discrete
values) due to the scarcity of BRAM slices: if 32-bit floating-
point format is used, 65% of BRAM available in Pynq-
Z2 is consumed for each map buffer, and the above design
(Figure 6) becomes not synthesizable. The CSM core stores
only the high-order 6-bits of retrieved 8-bit values to the
buffers. As shown in the evaluation (Section IV), the algorithm
performance is not severely affected by the quantization errors.

D. Parallelizing the Fine Matching

The matching modules (vi)-(vii) parallelize score evalua-
tions by exploiting partially sequential access patterns found
in CSM (Figure 7). Fine matching (Algorithm 1, lines 11-15)
evaluates matching scores for w2 solution candidates ranging
from (n′

x, n
′
y, nθ) to (n′

x + w − 1, n′
y + w − 1, nθ) using

Equation 3. Observation of Equation 3 reveals that, for the
k-th scan point, grid map values from M(ik + n′

x, jk + n′
y)

to M(ik +n′
x +w− 1, jk +n′

y +w− 1) are accessed (Figure
7 (left)), to evaluate scores for the above candidates.

This motivates to develop the parallelized version of fine
matching as shown in Algorithm 2, which firstly interchanges
the loops over k and nx, and then completely unrolls the
innermost nx-loop by setting the unrolling factor to w, so
that the spatial locality in map accesses is exploited. It also
parallelizes the loop over ny . By using Algorithm 2, our
fine matching module can process 2w consecutive grid map
elements and compute 2w scores {s[·, ·]} in parallel, with only
a small memory overhead. With the cyclic partitioning of M
along x, y dimensions, the latency for fine matching is reduced
from 235 to 15 µs (w = 8, N = 360), yielding the 15.74×
performance improvement.

Algorithm 2 Parallelized Fine Matching
1: for ny = n′

y, n
′
y + 2, . . . , n′

y + w − 2 do
2: ∀i ∈ [0, . . . , w − 1] , j ∈ [0, 1] s[i, j]← 0
3: for k = 1, . . . , N do
4: ∀i, j, s[i, j]← s[i, j] +M(ik +n′

x + i, jk +ny + j)

5: i∗, j∗ ← argmaxi,j s[i, j]
6: if s[i∗, j∗] > s∗ then
7: s∗ ← s[i∗, j∗], (n∗

x, n
∗
y, n

∗
θ)← (n′

x + i∗, ny + j∗, nθ)

E. Parallelizing the Coarse Matching

Our design also parallelizes coarse matching (Algorithm
1, lines 6-10), by reordering map elements and applying
the similar optimizations as above. For the k-th scan point,
grid map elements starting from M(ik − wx, jk − wy) to

Fig. 7. Access patterns in fine (left) and coarse (right) matching (w = 3)

M(ik −wx + (ŵx− 1)w, jk −wy + (ŵy − 1)w) are accessed
when iterating over n′

x and n′
y (i.e., coarse search space),

creating strided access patterns with the stride of w (Figure
7 (right)). From this observation, parallelized coarse matching
algorithm is obtained (Algorithm 3), which unrolls the loop
n′
x, thereby allowing the parallel evaluation of scores (Equa-

tion 2). Note that the horizontal order of coarse map elements
is rearranged as depicted in Figure 8 (left), to convert the stride
accesses to non-stride sequential accesses (Figure 8 (right)).
The unrolling factor of loop n′

x is set to eight, meaning that
eight consecutive elements along x-dimension are accessed
and eight scores are computed in parallel (line 5).

Algorithm 3 Parallelized Coarse Matching
1: for n′

y = −wy,−wy + w, . . . ,−wy + (ŵy − 1)w do
2: for n′

x = −wx,−wx + 8w, . . . ,−wx + (ŵx − 8)w do
3: ∀i ∈ [0, . . . , 7] , s′[i]← 0
4: for k = 1, . . . , N do
5: ∀i, s′[i]← s′[i] +M′(ik − wx + i · w, jk + n′

y)

6: for i = 0, . . . , 7 do
7: if s′[i] > s∗ then
8: Perform fine matching (Algorithm 2)
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Fig. 8. Rearranging the layout of coarse map M′ (left, w = 8) to parallelize
the strided accesses and optimized access patterns (right, w = 3)

F. Reusing Previously Transferred Data

Using flag packets (Figure 5), the CSM core provides
an option to skip data transfers, and reuses the previously
transferred ones already stored on BRAM. This improves the



performance of one-to-many scan matching, i.e., matchings
between a set of scans and a map (M, {S1, . . . ,SK}), or
between a set of grid maps and a scan ({M1, . . . ,MK} ,S).
In the first case, a map M is transferred only once before
the matching with S1, and then is reused for matchings with
S2, . . . ,SK , eliminating K − 1 unnecessary transfers of M
and K − 1 precomputations of M′ in the module (iii).

G. Integration into SLAM

Our CSM core is easily integrated into LiDAR SLAM
systems that use scan-to-map matching. As depicted in Figure
9, we offload the scan matching part in two major algorithms:
PF-SLAM and graph-based SLAM. PF-SLAM (Figure 9 (left))
creates two threads to parallelize scan matching for particles:
each thread independently uses one pair of CSM core and
DMA controller to process half of the particles, which in-
volves the matching between one scan and multiple grid maps
individually owned by particles. Other tasks, e.g., updates of
grid maps and particle resampling, are executed on the CPU.

Graph-based SLAM (Figure 9 (right)) is also multi-threaded
and assigns one CSM core to each thread. The frontend thread
performs scan matching between the latest scan and a grid map
consisting of recent scans to update the current robot pose.
The backend thread performs loop detections by attempting
to match the recent scans against old submaps consisting of
previously acquired scans, i.e., performs many-to-many scan
matching. In the algorithmic aspect, loop detection is basically
the same as the frontend scan matching but with the larger
search space, and thus the CSM core is also applicable to loop
detections without modifying any logic. The backend treats a
matching attempt as a success, if a returned score s∗ is greater
than the predefined threshold sT . The next section evaluates
the performance of our core.
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Fig. 9. Acceleration of the particle filter-based (left) and graph-based (right)
LiDAR SLAM

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Details of the CSM Core Implementation

We used Xilinx Vivado HLS 2019.2 for developing the
proposed core in C++, and Vivado 2019.2 to run synthesis and

place-and-route steps. Pynq-Z2 development board (Figure 10
(left)) is chosen as a target device, to show that our design fits
within the low-priced and resource-constrained FPGAs. Pynq-
Z2 consists of Xilinx XC7Z020-1CLG400C FPGA fabric
(equivalent to Artix-7), dual-core ARM Cortex-A9 CPU at
650MHz, and 512MB DDR3 DRAM. It runs Pynq Linux
based on Ubuntu 18.04. The operation frequency of our design
is set to 100 MHz.

B. Details of the SLAM Implementations

Our PF-SLAM and graph-SLAM systems were written
in C++ from scratch without ROS (Robot Operating Sys-
tem). Their designs are inspired by the famous GMap-
ping [18] and the representative graph-based methods (e.g.,
Karto SLAM [24] and Google Cartographer [1]), respectively.
The graph-SLAM backend uses the g2o library [25] for pose
graph optimization. We compiled them using GCC 7.3.0 with
-O3 compiler flag. Note that the software scan matcher in PF-
SLAM is parallelized using OpenMP for the fair performance
comparison. In PF-SLAM, we used 16 particles throughout the
experiments presented below. As mentioned in Section II-C,
CSM estimates the robot position at r = 5cm accuracy, which
is same as the grid map resolution. After performing CSM,
our SLAM system refines the pose estimate ξ∗ at a subpixel
accuracy using iterative scan matching methods [30] [32].

C. Real-world Datasets

We used three publicly available datasets from the Radish
repository [33], recorded at Intel Research Lab (Intel, 28.5×
28.5m), MIT CSAIL Building (MIT, 61×46.5m), and ACES
Building (ACES, 56 × 58m). We also obtained a real-world
dataset at the corridor in an office building using a Hokuyo
URG-04LX-UG01 range finder, which has the maximum
measurement range of 5.6m and the angular resolution of
0.36◦ (Figure 10 (right)). The wheeled robot was controlled
remotely to move around the corridor twice for 1,226 seconds,
and collected scans and wheel odometry data at around 500ms
interval (2Hz). We also used Revo LDS dataset from [1], which
includes scan data captured at around 200ms interval (5Hz)
using the low-cost Revo LDS LiDAR.

Fig. 10. Pynq-Z2 development board (left) and wheeled mobile robot
equipped with Hokuyo URG-04LX-UG01 LiDAR sensor (red square) (right)

D. Resource Utilization and Runtime Memory Consumption

The FPGA resource utilization of our design (Figure 4) is
summarized in Table I. The BRAM consumption is linear with
the number of CSM cores implemented and also with the size
of grid map buffers (Figure 6), thus our design is constrained



by the amount of BRAM available. Grid map buffers consume
68.6% (96 slices) of BRAMs, which would increase 5.3x
without quantizing values from 32-bit to 6-bit.

TABLE I
FPGA RESOURCE UTILIZATION OF THE CSM CORE

BRAM DSP FF LUT
Used 111 24 20,121 21,026
Available 140 220 106,400 53,200
Utilization (%) 79.29 10.91 18.91 39.52

In graph-based SLAM, the software scan matcher stores
coarse maps to the DRAM to avoid computations for the same
input, which reduces the preprocessing cost when matching
multiple scans to the same grid map (i.e., loop detections). In
contrast, CSM core computes coarse maps inside the sliding
window maximum module (Figure 6) and eliminates the
necessity of DRAM storage for caching coarse maps. Using
CSM core, the physical DRAM usage is reduced from 59.5
to 48.3 MiB (ACES), 101.7 to 76.6 MiB (Intel), and 60.1 to
39.5 MiB (MIT-CSAIL), respectively.

E. Execution Time Breakdown and Latency

Figures 11 and 12 show the execution time breakdowns
of PF-SLAM and graph-based SLAM frontend. Both figures
consider the data transfer overhead between PS-PL for fair
comparisons. In PF-SLAM, CSM core speeds up the scan
matching process by 13.67x, 14.09x, and 13.67x, reducing the
total execution time by 4.34x, 4.67x, and 4.03x on ACES,
Intel, and MIT-CSAIL, respectively, which demonstrates the
effectiveness of CSM core on variety of datasets. Similarly, in
graph-based SLAM, CSM core speeds up the frontend scan
matching by 14.84x, 13.90x, and 13.85x, reducing the total
execution time by 4.00x, 3.14x, and 3.09x on those datasets.

The above performance improvement is achieved by par-
allelizing the coarse-to-fine matching as described in Section
III, and by offloading coarse map precomputations to the CSM
core. The computational complexity of this precomputation
is linear with the number of grid cells in a given map and
has the measurable impact on the entire performance: in PF-
SLAM and graph-based SLAM, this accounted up to 36.9%
and 45.1% of the scan matching process.

Compared to PF-SLAM that maintains a set of particles
and considers multiple hypotheses on robot trajectory and
map, graph-based SLAM computes only the most plausible
estimate, leading to the better performance. Figures 11 and 12
highlight the performance advantage of graph-based SLAM
over PF-SLAM (e.g., 98.2ms and 416.2ms per frame in Intel).
The backend loop detection in graph-based SLAM is acceler-
ated by 16.18x (3760.1 to 75.4ms per successful detection),
17.23x (544.2 to 28.3ms) and 16.64x (577.1 to 37.0ms) on
ACES, Intel, and MIT-CSAIL datasets, indicating that CSM
core provides better performance improvements with a larger
search space. CSM core offered comparable loop detection
capability: it successfully detected 115, 491, and 141 loops,
whereas the software version detected 42, 407, and 46 loops
from those datasets. Note that the comparisons presented here

are only indicative, since different grid maps and scans are
used for loop detections on CPU and FPGA due to the timing
differences.

In Revo LDS dataset, the latency for processing a single
scan was 63.7 ± 39.4ms in graph-based SLAM, which is
shorter than the scan period (i.e., 200ms), and hence the real-
time performance is achieved for most of the runtime.
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Fig. 11. Execution time breakdown of the PF-SLAM. It took 584.4s (416.2ms
per frame) to process the Intel dataset with FPGA acceleration (4th row),
which is 4.67x speedup compared to the CPU-only execution (3rd row).
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Fig. 12. Execution time breakdown of the graph-based SLAM frontend.
It took 137.9s (98.2ms per frame) to process the Intel dataset with FPGA
acceleration (4th row), which is 3.14x speedup compared to the CPU-only
execution (3rd row).

F. Accuracy

Figures 1, 14 show the grid maps obtained from CSM cores
to demonstrate the quality of outputs. Note that the grid map
for Revo LDS dataset is created using only LiDAR scans
and without odometry information. Figure 13 compare the
robot trajectories obtained from CSM cores against the ones
from software scan matchers and pure odometry (i.e., only
using wheel encoders to estimate robot motions, red line). The
significant overlap between two trajectories (CPU and FPGA)
indicate that the output of CSM core preserves the accuracy
of the software scan matchers, in spite of the quantization of
grid map values, limitation of the buffer sizes, and rounding
errors introduced by fixed-point arithmetic operations.

Tables II and III quantitatively evaluate the accuracy of
output robot trajectories obtained from Radish datasets. Since
ground-truth trajectories are not provided in Radish datasets,
we used the accuracy measure proposed in [34] that does not
require them. The accuracy is defined by the errors between
the robot motion ∆ξi,j = ξj ⊖ ξi from time i to j, which is
computed from the output trajectory {ξ0, ξ1, . . . , ξT }, and the
ground truth motions ∆ξ∗i,j obtained by manually matching
the scan data Si,Sj at time i and j using the dedicated



software. Note that the inverse compounding operator ⊖
computes a relative pose between two given poses.

As shown in Tables II and III, CSM core achieved accuracy
close to the software implementation and another similar
work [12], where the authors of [12] propose an FPGA-based
accelerator for the iterative scan matching and integrate it to
PF-SLAM. Compared to [12], CSM core can handle backend
loop detections with large initial errors as well as the frontend
scan matching, showing its robustness and versatility, while at
the same time providing faster computation time. Translational
errors were less than the twice of the grid map resolution in
ACES and MIT-CSAIL datasets, and were also comparable
to that of the state-of-the-art method [1], especially in PF-
SLAM. PF-SLAM presented better accuracy than graph-based
SLAM, which is predictable, as PF-SLAM maintains multiple
hypotheses about the current state (i.e., robot trajectory) and
selects the most probable one, which yields robustness and
improved accuracy at the cost of increased computational costs
(Figures 11 and 12). Figure 14 (right) shows the grid map
of the corridor: we can confirm that the graph-based SLAM
successfully detected and closed a loop when a robot moved
around the corridor.

TABLE II
COMPARISON OF THE TRAJECTORY ACCURACIES (PF-SLAM)

CPU FPGA

ACES Trans (m) 0.082± 0.196 0.058± 0.067
Rot (rad) 0.087± 0.322 0.087± 0.323

Intel Trans (m) 0.132± 0.155 0.118± 0.130
Rot (rad) 0.088± 0.287 0.087± 0.286

MIT Trans (m) 0.040± 0.045 0.041± 0.046
Rot (rad) 0.044± 0.286 0.043± 0.286

TABLE III
COMPARISON OF THE TRAJECTORY ACCURACIES (GRAPH-BASED SLAM)

CPU FPGA

ACES Trans (m) 0.078± 0.108 0.092± 0.131
Rot (rad) 0.217± 0.626 0.213± 0.617

Intel Trans (m) 0.152± 0.227 0.146± 0.162
Rot (rad) 0.174± 0.504 0.139± 0.418

MIT Trans (m) 0.062± 0.109 0.064± 0.118
Rot (rad) 0.160± 0.542 0.143± 0.474
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Fig. 13. Comparison of the trajectories (left: PF-SLAM, Intel, right: graph-
based SLAM, MIT-CSAIL)

G. Power Consumption

We measured the power consumption of the entire Pynq-Z2
board using a wattmeter: the power consumption was 2.3-2.4W
when running both PF-SLAM and graph-based SLAM systems
with and without our proposed CSM cores. Note that the value
reported above include the power consumption of CPU and
other peripherals as well as that of CSM cores, meaning that
the CSM core itself consumes less than 2.3-2.4W.

Fig. 14. Grid map and robot trajectory (red line) obtained using our proposed
CSM core (left: graph-based SLAM and ACES dataset, right: graph-based
SLAM and dataset captured at the corridor)

V. CONCLUSION

In this paper, we proposed an FPGA-based accelerator,
which is applicable for a variety of 2D LiDAR SLAM meth-
ods. We focused on the scan matching part as it becomes the
major bottleneck, and chose to implement Correlative Scan
Matching (CSM) method considering the balance between
algorithm simplicity and efficiency. We conducted several ar-
chitectural and algorithmic optimizations such as data realign-
ments and loop transformations, to fully exploit the inherent
parallelism and minimize the resource utilization. Our design
consisting of two CSM cores can be implemented on a low-
cost FPGA with severe resource constraints (Pynq-Z2 board).

For evaluations, we integrated the proposed accelerator into
two representative SLAM approaches, namely PF-SLAM and
graph-based SLAM. We confirmed that CSM core improves
the scan matching performance by up to 14.09x and 14.84x,
and the overall performance by up to 4.67x and 4.00x in
these SLAM methods while only consuming 2.3-2.4W. Loop
detection in graph-based SLAM is accelerated by up to 17.23x.
Results also highlighted the advantages of these methods:
graph-based SLAM achieved faster computation time, whereas
PF-SLAM provided more accurate trajectories and maps, and
our unified design can easily switch between these methods.
The error of trajectory estimate was around 10cm and 0.1rad
in most cases, which was comparable to that of the software
counterparts and even the state-of-the-art SLAM method.
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