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Abstract—Path planning is of crucial importance for au-
tonomous mobile robots, and comes with a wide range of real-
world applications including transportation, surveillance, and
rescue. Currently, its high computational complexity is a major
bottleneck for the application on such resource-limited robots.
As a promising and effective solution to tackle this issue, in
this paper, we propose a novel learning-based method for 2D/3D
path planning, P3Net (PointNet-based Path Planning Network),
along with its resource-efficient implementation targeting Xilinx
ZCU104 boards. Our proposal is built upon two improvements
to the recently proposed MPNet: we use a parameter-efficient
PointNet-based encoder network to extract high-fidelity obstacle
features from a point cloud, in conjunction with a lightweight
planning network to iteratively plan a path. Experimental results
using 2D/3D datasets demonstrate that our FPGA-based P3Net
performs significantly better than MPNet and even comparable to
the state-of-the-art sampling-based methods such as BIT*. P3Net
is able to plan near-optimal paths 6.24x-9.34x faster than MPNet,
and eventually improves the success rate by up to 24.45%, while
reducing the parameter size by 5.43x–32.32x. This enables the
subsecond real-time performance in many cases and opens up a
new research direction for the edge-based efficient path planning.

Index Terms—Path Planning, PointNet, Point Cloud, FPGA

I. INTRODUCTION

Path planning is a crucial component for realizing au-
tonomous robots, with a plethora of methods proposed in the
literature. Its objective is to plan a collision-free and shortest
possible path connecting a given start and goal position (see
Figs. 1-2). The low-cost implementation on resource-limited
edge devices would allow small mobile robots (e.g., drones)
to perform path planning on its own, greatly expanding the
application of such robots in fields like transportation [1],
rescue [2], and surveillance [3]. Sampling-based methods such
as PRM [4] and RRT [5] are widely used in practice. RRT
explores the environment by placing randomly sampled nodes
in an obstacle-free space and incrementally expanding a tree;
a number of RRT variants [6]–[10] have been proposed to
improve search efficiency and convergence speed. Despite
steady improvements, they still rely heavily on heuristics,
which may be invalid if the environment condition (e.g.,
obstacle configuration) is distinct from those expected by the
methods, or require careful parameter tuning. These methods
inevitably face a tradeoff between the computational effort
and the quality of generated paths [11]. More fundamentally,
due to the limited computing capabilities of mobile robots, it
usually takes tens of seconds to obtain solutions in complex
scenarios (Fig. 1 (bottom)). Considering that robots run other
necessary tasks (e.g., mapping and localization) simultane-
ously, they should ideally plan feasible paths in subseconds
to prevent delays. To circumvent these issues, the recent
trend is to apply deep learning techniques and develop an

Fig. 1. Results on the 2D datasets (top: Simple2D, bottom: Complex2D).

Fig. 2. Results on the Complex3D dataset.

efficient method [12]–[14], that ideally work in a variety of
environments without relying on any heuristics.

MPNet [11] is such a learning-based method designed
with generality in mind. It solves planning problems with
various state-space dimensions and constraints (point-mass,
rigid-body, arms, etc.) as shown in Figs. 1-2, while requiring
less computational effort than conventional methods. MPNet
offers a high degree of parallelism, making it more amenable
to hardware acceleration. Considering these features, MPNet
is suitable for the low-cost implementation targeting edge
devices. MPNet uses two DNNs to (1) encode obstacle shapes
from point clouds and (2) iteratively plan a feasible path.
In spite of the simple structure, they have the following
shortcomings. The encoder does not consider the unordered
and unstructured nature of point clouds, which degrades the
quality of extracted features, and the planning network has
low parameter efficiency. As a result, MPNet lacks stability
and struggles to obtain a solution in difficult problem settings
as shown in Fig. 1 (bottom).

In this paper, we make two improvements to MPNet in order
to address the above issues, and propose a novel learning-
based method for 2D and 3D path planning, P3Net (PointNet-
based Path Planning Network). We use a PointNet [15]-
based encoder to obtain high-fidelity point cloud features, in
conjunction with a lightweight planning network. PointNet is a
simple but powerful architecture consisting of fully-connected



layers, and is the current mainstream for point cloud-based
tasks, e.g., classification [16], segmentation [17], and reg-
istration [18]. We then present a resource-efficient P3Net
implementation based on FPGA SoCs, consisting of a custom
FPGA-based accelerator integrating these DNNs. According
to the computational flow and characteristics of DNNs, we
conduct a set of design optimizations for the accelerator.
Experimental results demonstrate that P3Net achieves better
success rates with fewer parameters and computational cost
compared to MPNet. We also confirm that P3Net is faster than
the state-of-the-art sampling-based planners and still produces
the comparable results.

The remainder of this paper is organized as follows: Section
I-A briefly reviews related works, and Section II presents the
preliminaries. Our proposal is described in Section III and its
implementation details are given in Section IV. Experimental
results are shown in Section V. Section VI concludes the paper.

A. Related Works
1) Learning-based path planning: Learning-based methods

apply deep learning techniques, e.g., value iteration [19],
LSTM [20], [21], and Transformer [22], to plan paths in a
discrete grid space. They take grid map images to encode the
given planning tasks; point clouds are more flexible and space-
efficient, since they can represent obstacles of arbitrary shape,
and do not contain information about obstacle-free regions.
Also, we opt to use simpler and lightweight DNNs, as we put
more focus on the resource-efficient implementation for low-
cost edge devices. Strudel et al. [12] combine the reinforce-
ment learning (RL) and PointNet encoding. The performance
of RL is severely affected by random seeds and reward design,
which easily incur training instabilities.

Aside from these end-to-end approaches, there also exist a
line of work for the hybrid approach. WPN [23] incorporates
LSTM-based waypoint generation into A*, whereas Yonetani
et al. [14] introduce a differentiable A*. Several studies aim
to improve the exploration efficiency of RRT by generating
informed samples in a learned latent space [24]–[26]. P3Net
is an extension of MPNet and hence inherits its advantages;
P3Net can be jointly used with any RRT-based method.

2) Acceleration of path planning: A number of studies
have been reported on the hardware acceleration of PRM-
based [27]–[31] and RRT-based [32]–[35] methods. Some
works consider the GPU acceleration or distributed implemen-
tation of RRT [36]–[38]. The sampling-based methods require
intricate strategy for parallelization due to their inherently
sequential nature. Compared to that, P3Net is comprised of
easily parallelizable DNN computations, and does not involve
nearest neighbor search or complex data structures (e.g., K-d
trees), substantially facilitating the hardware implementation.
Owing to the efficient informed sampling, P3Net requires less
collision checks, which constitute a bottleneck in conventional
methods. To our knowledge, this paper is the first to consider
the FPGA-based implementation of path planning, harnessing
the advantages of learning-based approach.

II. PRELIMINARIES

This section presents a brief description of MPNet, which
is summarized in Alg. 1 and Figs. 3-4 (refer to [11] for more
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Fig. 3. Overview of the MPNet algorithm. As shown in left, MPNet takes
as input a start position cstart, a goal position cgoal, and a point cloud
P representing obstacles in the environment (blue points). MPNet uses two
DNNs, ENet and PNet, for feature extraction and planning. First, the planner
computes a feature embedding ϕ(P) using ENet. The planner then computes
a path by repetitively calling PNet. Given cgoal, ϕ(P), and a current position
ct, PNet computes the next position ct+1 which is one step closer to the goal.
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Fig. 4. MPNet-based path planning. MPNet mainly consists of three steps.
NeuralPlanner (left) computes a near-optimal path connecting a start and
a goal position using ENet and PNet. Replan (center) creates detours (blue
lines) as necessary to avoid the obstacles and obtain a feasible, collision-
free path. Smoothing (right) removes redundant waypoints (semi-transparent
points) to smoothen a path and reduce a cost (green lines).

details). Here we assume a point-mass robot moving in a 2D
or 3D environment, with its position denoted as c ∈ RD

(D = 2, 3). MPNet aims to find a feasible path τ connecting
a start and a goal position cstart, cgoal. As shown in Fig. 3
(right), MPNet takes as input cstart, cgoal, and a point cloud
P = {p1, . . . ,pN} representing obstacles in the environment.
It utilizes two DNNs, ENet and PNet, for obstacle encoding
and planning (Fig. 3 (left)). First, using ENet, the planner
obtains a MD feature embedding ϕ(P) ∈ RM of the point
cloud (line 1). Then, it performs an iterative and bidirectional
planning using PNet as follows (line 2, lines 12-24).

Given a start position cstart, the planner incrementally
expands a path τa = {cstart, . . . , caend} towards the goal
using PNet (Fig. 4 (left), lines 16-17). PNet takes as input
ϕ(P), cgoal, and a current position caend to compute a next
position canew which is one step closer to the goal (Fig. 3
(right), line 16). At the same time, the planner expands a
secondary path τb =

{
cgoal, . . . , c

b
end

}
from goal to start

(lines 19-20). In this case, PNet computes a next position
cbnew from an input tuple

[
ϕ(P), cbend, cstart

]
to get closer

to the start position (line 19). At this point, there may be
obstacles on the line between adjacent waypoints caend, c

a
new

(cbend, c
b
new), which is addressed later by creating a detour. The

planner returns a path τ = {c0, . . . , cT } between cstart = c0
and cgoal = cT by connecting two paths τa and τb if
possible, i.e., there is no obstacle between two path endpoints
caend, c

b
end (lines 22-23). Starting from cstart and cgoal, the

planner expands two paths τa, τb alternatively (lines 15, 18),
and attempts to connect them; this process is repeated INP



times at maximum (line 14). If two paths cannot be connected
after INP iterations, path planning between cstart and cgoal is
considered unsuccessful (line 24). This process is denoted as
τ ← NeuralPlanner(cstart, cgoal,ϕ(P), INP) (line 2).

If the above path τ is collision-free, the planner returns
τ as a final solution after performing a smoothing process,
which removes redundant waypoints in τ to shorten and
smoothen the path length (lines 3-5). Given three waypoints
ci, cj , ck ∈ τ (i < j < k), the intermediate one cj is pruned
if ci and ck can be directly connected by a straight line
(see Fig. 4 (right)). Otherwise, the planner moves on to the
replan process (line 7, lines 25-37). For all pairs of adjacent
waypoints ci, ci+1 ∈ τ which are not connectable, it attempts
to create a new path (detour) τi,i+1 = {ci, c(1)i , c

(2)
i , . . . , ci+1}

between ci, ci+1 to circumvent the obstacle by calling
NeuralPlanner(ci, ci+1,ϕ(P), IRNP) (Fig. 4 (center), line
32). The maximum number of iterations is set to IRNP instead
of INP in this case. Since the planner is now creating a shorter
path, IRNP is usually set smaller than INP. The new path τ ′

is obtained by inserting new waypoints c
(1)
i , c

(2)
i , . . . into τ

(line 34). We refer to this process as τ ′ ← Replan(τ,ϕ(P))
(line 7). Note that PNet has a stochastic behavior due to
Dropout layers, i.e., PNet returns different results on multiple
runs for the same input, so do NeuralPlanner and Replan.
PNet is interpreted as an efficient informed sampling process;
it generates next positions cnew from a promising region in
the environment which may contain an optimal path.

If τ ′ is collision-free, the planner returns τ ′ as a final solu-
tion (lines 8-10); otherwise, the planner calls Replan(τ,ϕ(P))
again. If a collision-free path τ ′ is still not obtained after
IRE times execution of Replan, then the path planning is
considered unsuccessful (line 11). Owing to the stochasticity
of Replan, different candidate paths are generated by multiple
Replan attempts until a feasible one is found; this trial-and-
error approach leads to the increased chance of avoiding
obstacles and hence the better success rate. Note that the
maximum iterations INP, IRNP, IRE are hyperparameters. The
network structure of ENet and PNet, and our proposal are
presented in the next section.

III. METHOD

In this section, we propose (1) an improved version of MP-
Net models, P3Net, and (2) its FPGA-based implementation.

A. P3Net: improved MPNet models

MPNet employs two DNNs, ENet and PNet, for feature
extraction and planning (Fig. 3 (right)). We suffix the names
with 2D/3D to indicate DNNs for 2D/3D path planning when
necessary. For the sake of brevity, a fully-connected (FC) layer
of m inputs and n outputs is denoted as FC(m,n), a batch
normalization for n-channel inputs/outputs as BatchNorm(n),
a max-pooling layer with window size n as MaxPool(n), and
a dropout with rate p ∈ [0, 1) as Dropout(p), respectively. We
use a PointNet [15]-based ENet and a more compact version
of PNet, together called P3Net, as described below.

1) PointENet (PointNet-based ENet): As illustrated in Fig.
5 (left), the original ENet is a stack of FC layers, each followed
by a ReLU activation. ENet2D takes as input a 2D point cloud

Algorithm 1 MPNet for 2D and 3D path planning
Require: Start cstart, goal cgoal, obstacle point cloud P
Ensure: Feasible path τ ′ = {c0, . . . , cT } (c0 = cstart, cT = cgoal)
1: Compute point cloud feature: ϕ(P)← ENet(P)
2: τ ← NeuralPlanner(cstart, cgoal,ϕ(P), INP)
3: τ ′ ← Smoothing(τ)
4: if τ ′ ̸= ∅ and τ ′ is collision-free then
5: return τ ′

6: for i = 0, . . . , IRE − 1 do
7: τ ′ ← Replan(τ,ϕ(P))
8: τ ′ ← Smoothing(τ)
9: if τ ′ ̸= ∅ and τ ′ is collision-free then

10: return τ ′

11: return ∅ ▷ Failure

12: function NeuralPlanner(cs, cg ,ϕ(P), I)
13: τa ← {cs} , τb ← {cg} , r = 0
14: for i = 0, . . . , I − 1 do
15: if r = 0 then
16: Compute next position: canew ← PNet(ϕ(P), caend, cg)
17: τa ← τa ∪ {canew} , r = 1
18: else if r = 1 then
19: Compute next position: cbnew ← PNet(ϕ(P), cbend, cs)
20: τb ← τb ∪

{
cbnew

}
, r = 0

21: if τa and τb are connectable then
22: τ ← Concatenate(τa,Reverse(τb))
23: return τ
24: return ∅ ▷ Failure

25: function Replan(τ = {c0, . . . , cT } ,ϕ(P))
26: τnew ← ∅
27: for i = 0, . . . , T − 1 do
28: if ci and ci+1 are connectable then
29: τnew ← τnew ∪ {ci, ci+1}
30: else
31: τi,i+1 ← NeuralPlanner(ci, ci+1,ϕ(P), IRNP)

32: ▷ Compute a detour τi,i+1 = {ci, c
(1)
i , c

(2)
i , . . . , ci+1}

33: if τi,i+1 ̸= ∅ then
34: τnew ← τnew ∪ τi,i+1
35: else
36: return ∅ ▷ Failure
37: return τnew

P ∈ R1400×2 containing 1400 points, which is flattened into
a 2800D vector before fed to the layers. The output is a 28D
feature vector, denoted as ϕ(P) ∈ R28. Similarly, ENet3D
contains a series of FC layers and computes a 60D feature
from a 3D point cloud of size 2000, i.e., FC(6000, 784) →
ReLU → FC(784, 512) → ReLU → FC(512, 256) →
ReLU→ FC(256, 60). Such encoder design suffers from the
following two limitations. It lacks the flexibility as the number
of points is fixed and cannot be adjusted according to the
complexity of the planning tasks. More importantly, the output
depends on the order of input points, which is undesirable for
point cloud encoders. The output should remain the same even
when input points are randomly swapped, since the input still
represents a point cloud of the exact same shape.

To address these limitations, we adopt PointNet [15] as
a backbone for ENets: we refer to PointNet-based ENet as
PointENet2D/3D. PointENet extracts a feature ψ(pi) for each
point pi ∈ P and then aggregates these pointwise features to
obtain a global feature ϕ(P) by max-pooling. As shown in
Fig. 5 (center), PointENet2D extracts 252D feature vectors and
is represented as BE(2, 64) → BE(64, 64) → BE(64, 64) →
BE(64, 128) → BE(128, 252) → MaxPool(N). N is the
number of points and BE(m,n) is a basic building block con-
sisting of three layers, i.e., FC(m,n) → BatchNorm(n) →
ReLU. Unlike the original ENets, the number of parameters
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Fig. 5. ENet for 2D path planning (left: original ENet2D, center:
PointENet2D, right: computation flow of the FPGA-based PointENet2D)

is independent from the number of input points, leading to the
improved space-efficiency. PointENet3D has the same network
structure as PointENet2D, except the input and output layers
are replaced with FC(3, 64) and FC(128, 250) in order to
extract 250D global features from 3D point clouds.

By its design, PointENet is able to process point clouds of
any size, and is also invariant to the permutation of points, as
it uses the symmetric max-pooling function. Another benefit
is that it obtains more detailed feature representation with
substantially fewer parameters than ENets. In 2D and 3D
cases, the number of parameters is reduced by 31.73x (1.60M
to 0.05M) and 104.47x (5.25M to 0.05M), while at the same
time increasing the output feature dimensions by 9x (28 to
252) and 4.17x (60 to 250), respectively.

2) SPNet (shrinked PNet): The original PNets are con-
structed from a set of building blocks, denoted as BP(m,n) =
FC(m,n) → ReLU → Dropout(0.5) (Fig. 6 (left)). PNets
take as input a concatenated input [ϕ(P), ct, cgoal], and com-
pute a next position ct+1. PNet2D/3D share the same hidden
layers; the only difference is in the first and last FC layers:
PNet2D uses FC(32, 1280) and FC(32, 2) to take 28+2+2 =
32D inputs and compute 2D positions, whereas PNet3D uses
FC(66, 1280) and FC(32, 3) to take 60+ 3+3 = 66D inputs
and compute 3D positions.

As discussed above, PointENet provides obstacle features
which are useful for path planning, as they are robust to the
input permutations and better capture the geometric structure
of the environment. It leads to an expectation that shallower
PNet is sufficient for path planning. In addition, it is not
reasonable to use the same set of hidden layers for both 2D/3D
problems. Especially, PNet2D has low parameter efficiency,
i.e., PNet2D is unnecessarily large for the complexity of the
problem. We hence employ PNet models with fewer building
blocks, referred to as SPNet2D/3D. As shown in Fig. 6
(center), SPNet2D is a stack of six building blocks; it takes
a 252 + 2 + 2 = 256D input and generates a 2D position.
SPNet3D is constructed by removing some superfluous layers
from PNet3D and its structure is shown in Fig. 6 (right).
SPNet2D/3D have 32.58x (3.76M to 0.12M) and 2.35x (3.80M
to 1.62M) fewer parameters than PNet2D/3D; by combining
the results from PointENet, we finally achieve 32.32x and
5.43x parameter reduction in 2D/3D cases, respectively.
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Fig. 6. PNet for 2D/3D path planning (left: original PNet2D, center:
SPNet2D, right: SPNet3D)

B. FPGA acceleration of PointENet model

The feature extraction using PointENet requires a longer
time than ENet (see Table III), since it extracts an individual
feature for every point; we aim to address this by the FPGA-
based acceleration. The typical software implementation of
PointENet would compute individual features for all points
at once, producing a matrix Ψ = {ψ(p1), . . . ,ψ(pN )}
of size N × 252 (or N × 250 in the 3D case), and then
apply max-pooling to obtain a 252D (250D) global feature
ϕ(P) = MaxPool(Ψ). In this case, each building block
involves a series of matrix operations, i.e., BE(m,n) =
ReLU(BatchNorm(WX + b1⊤)), where W ∈ Rn×m and
b ∈ Rn are weight and bias parameters of FC layer, 1 ∈ RN

is a vector of all ones, and X ∈ RN×m is an input matrix
stacking mD features for all N points. While matrix operations
are highly efficient and hardware-amenable, this approach is
not suitable for FPGA implementation, as it requires large
buffers for storing intermediate results and features for all
N points, resulting in higher memory consumption. Also,
the maximum number of input points is constrained by the
total amount of memory resources, limiting the scalability. To
circumvent this issue, we take another approach for extracting
point cloud features as follows.

As depicted in Fig. 5 (right), our PointENet implementation
computes an individual feature ψ(pi) every time a new point
pi arrives, and then computes the element-wise maximum
between ϕ(P) and ψ(pi) to update the output feature ϕ(P).
This process is repeated for all N points. The max-pooling
operation is replaced by N times execution of element-wise
maximum ∀j ϕ(P)j ← max(ϕ(P)j ,ψ(pi)j). In this way,
the memory consumption is minimized, as we need to store
intermediate results for only a single point pi. PointENet
design is optimized by exploiting both data-level and task-
level parallelism. In FC layers, matrix and vector operations
are parallelized by partially unrolling the loop over output di-
mension and partitioning the buffers. The batch normalization
and ReLU activation are also optimized by calculating multiple
output elements at once. In addition, we employ a dataflow
optimization to pipeline the entire design (see Fig. 7); each
layer is viewed as one stage of the pipeline, meaning that
feature extraction for multiple different points is performed
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in parallel, which effectively reduces the overall latency with
only a few additional resources.

C. FPGA acceleration of SPNet model

Since SPNet is used in every iteration in the NeuralPlanner
algorithm (Section II), we also implement SPNet on the
FPGA to improve the entire performance. For FC and ReLU
activation layers, we leverage the data-level parallelism to
optimize the matrix and vector operations, as in the previous
section. As described in Section II, a notable characteristic of
PNet/SPNet is its stochastic behavior, which originates from
the dropout layers. For a nD input x = [x1, . . . , xn], dropout
of probability p is usually implemented by generating i.i.d.
random samples r1, . . . , rn from a uniform distribution over
[0, 1] and then setting xi to zero if ri < p. Our design of
Dropout(0.5) follows the same approach; we generate a 32-
bit pseudorandom unsigned integer ri for each input element
xi and replace xi with zero if ri is less than 216, which is
performed in a pipelined manner. A 32-bit linear feedback shift
register (LFSR) with feedback polynomial r32+r22+r2+r+1
is used as a pseudorandom generator. All dropout layers share
the same LFSR, and before starting the SPNet computation,
its internal state is initialized with a 32-bit seed generated
on the CPU side, in order to avoid dropping elements in the
same positions. We discuss the implementation details of our
FPGA-based P3Net in the next section.

IV. IMPLEMENTATION

A. Board-level implementation of MPNet

As shown in Fig. 8, our board-level implementation of
P3Net targets Xilinx Zynq UltraScale+ MPSoC devices, which
is divided into two parts: Processing System (PS) and Pro-
grammable Logic (PL). Our proposed DNNs are packaged
in a single AXI-compatible custom IP core, referred to as
P3NetCore. We developed two versions of P3NetCore for
2D/3D path planning, referred to as P3NetCore2D/3D, which
include 2D/3D versions of the proposed models, respectively.

P3NetCore along with one AXI DMA controller (DMAC)
and two AXI interconnects is implemented on the PL side.
DMAC is connected to the High-Performance (HP0) port via
interconnect to enable high-speed data transfer between PS
and PL. When trigerred from the PS side, DMAC reads data
from the DDR memory and transfers them to the slave port of
P3NetCore using AXI4-Stream protocol (red arrows in Fig. 8).
DMAC also retrieves the outputs from P3NetCore and writes
them back to the DDR. P3NetCore and DMAC both have
an AXI4-Lite slave port, which is connected to the High-
Performance Master (HPM0) port, to allow access to their
control registers from PS (blue arrows in Fig. 8). P3NetCore
provides a set of control and status bits (e.g., start and ready).
DMAC also has registers to specify the starting physical

address and length of the DDR buffer to be transferred. PS
runs the main part of MPNet algorithm and calls P3NetCore
by configuring those registers via memory-mapped I/O.

B. Implementation of P3NetCore
Fig. 9 presents an overview of the data and control flows

among modules inside P3NetCore2D. P3NetCore consists of
a main module and two inference modules (white rounded
squares in Fig. 9). It also provides four operation modes in
total, i.e., InitENet, InitPNet, RunENet, and RunPNet. Main
module orchestrates the overall process; when a start bit is
asserted by PS, it receives an operation mode from DMAC.
InitENet/InitPNet are for initializing PointENet/SPNet pa-
rameters, respectively: main module receives model param-
eters from DMAC and stores them to the dedicated on-chip
buffer (Mode 1 and 2, Fig. 9). In InitPNet mode, a 32-bit
seed is also transferred to initialize the LFSR pseudorandom
generator for dropout layers (see Section III-C).

When RunENet or RunPNet mode is selected, main
module delegates PointENet and SPNet inference tasks to
the two dedicated modules (Mode 3 and 4, Fig. 9). Each
inference module consists of a chain of submodules, which
correspond to the structure of DNNs, and on-chip buffers
for storing network parameters and layer input/outputs. In
RunENet mode, PointENet module (upper part of Fig. 9)
receives a 2D/3D point one-by-one from DMAC and processes
it in a pipelined manner to compute a global feature ϕ(P),
as described in Section III-B. PointENet module contains
three types of submodules for FC layers, batch normalization
coupled with ReLU activation (BN-ReLU), and max-pooling
(Max), respectively. Similarly, in RunPNet mode, SPNet
module (lower part of Fig. 9) receives a concatenated input
[ϕ(P), ct, cgoal], and computes a next position ct+1 using a
set of submodules. The output from both inference modules is
transferred back to the PS via AXI4-Stream master interface.

Thanks to the compact PointENet/SPNet2D models,
P3NetCore2D stores all model parameters on the on-chip
BRAM buffers, leading to the minimized memory access
latency. P3NetCore3D stores most parameters on BRAM
buffers, except ones for the first three FC layers in SPNet3D,
which are stored on the DDR due to the limited memory
resources. As a result, P3NetCore3D has three additional AXI
master ports connected to the HP0 port (see Fig. 8); FC
modules for these three layers only have small BRAM buffers
for storing a subset of the weight and bias parameters, which
are read from the DDR using a burst transfer as needed.
Considering that SPNet performs a regression task, i.e., it
should compute the precise position ct+1, we use a 32-bit
fixed-point format comprised of 16-bit integer part and 16-bit
fraction part, for model parameters and layer input/outputs.

We developed P3NetCore2D/3D (Fig. 8) using Vitis HLS
2020.2, and run synthesis and place-and-route of the block
design (Fig. 9) using Vivado 2020.2. We used Xilinx ZCU104
Evaluation Kit as a target SoC, which integrates an FPGA
fabric (XCZU7EV-2FFVC1156), a quad-core ARM Cortex-
A53 CPU running at 1.2GHz, and 2GB of DDR3 DRAM. For
running the software implementation, we used Pynq Linux
v2.7 based on Ubuntu 20.04. The operation frequency of
P3NetCore is set to 100MHz.



Zynq PS

ARM 
CPU

HP0 S

DRAM

M
M
M

S
MS

MS
M

S

HPM0 M

AXI DMA

AXI
Interconnect

Control registers 
(AXI4-Lite, 32-bit)

Zynq PL

Model params, inputs, outputs 
AXI4-Stream, 32-bit

Params for the first three FC layers

PointENet 
+

SPNet

MPNet IP

Fig. 8. Board-level implementation of P3Net3D.

S

S

M

PointENet 
module

SPNet 
module

Main 
module

PointENet params, buffers

SPNet params, buffers

Op-mode, 
params

Start BE
(2

, 6
4)

BE
(6

4,
 6

4)

BE
(6

4,
 6

4)

BE
(6

4,
 1

28
)

BE
(1

28
, 2

52
)

BP
(2

56
, 2

56
)

BP
(2

56
, 1

28
)

BP
(1

28
, 6

4)

BP
(6

4,
 6

4)

BP
(6

4,
 6

4)

FC
(6

4,
 2

)

M
ax

AXI4-Stream

Model params

Model params

AXI-Lite

AXI4-
Stream

Mode 1

Mode 2

Mode 3

Mode 4

FC( )

BN-ReLU( )

BE( )

BN-ReLU: BatchNorm + ReLU

FC-ReLU( )

Dropout(0.5)

BP( )

Fig. 9. Block diagram of P3NetCore2D.

C. Details for the software implementation and training

For the definition of original MPNet models, we used the
source code from the paper authors [11] as a reference; we
implemented all the other necessary parts such as training,
testing, and MPNet-based path planner from scratch using
Python 3.8.2 and PyTorch 1.10.2. We then added a new
P3Net-based path planner using the CPU- and FPGA-based
implementation of the proposed DNNs. Note that we compiled
and built PyTorch from source, enabling ARM Neon intrinsics
to fully take advantage of the multicore processor. We took
the implementation of the famous sampling-based methods,
i.e., RRT* [7], Informed-RRT* [8], and BIT* [9] from the
GitHub repository [39], and adapted it into our codebase. For
a fair performance comparison, we modified it to use FLANN
library [40] for faster nearest-neighbor search.

We followed the offline batch training strategy as presented
in [11], and jointly trained two models in an end-to-end fashion
as follows. We first computed an embedding of the point cloud
ϕ(P) using ENet (PointENet), and then estimated the next
position ĉt+1 from a concatenated input [ϕ(P), ct, cgoal] using
PNet (SPNet). Then, we computed a L2 loss ∥ct+1 − ĉt+1∥2
using a ground-truth next position ct+1, and its gradient was
back-propagated through two models. We used Adam opti-
mizer with default parameters in PyTorch. The batch size is set
to 1024, 8192, and 128 when training MPNet3D, MPNet2D,
and P3Net, respectively. We set the number of epochs to 200
and 50 when training MPNet and P3Net.

V. EVALUATION

We evaluate P3Net in terms of execution time, success rate,
path cost, and resource utilization, and compare the results
against MPNet and the three famous sampling-based methods,
i.e., RRT*, Informed-RRT* (IRRT*), and BIT*.

A. Path planning datasets

We used two datasets for 2D/3D path planning, Simple2D
and Complex3D, with each divided into one training and
two test sets (seen/unseen). Both are provided by the authors
of MPNet [11]. Their training sets contain 100 workspaces
with different obstacle configurations. Each has 4000 planning
problems, consisting of randomly generated start/goal pairs
and their corresponding ground-truth paths. The seen sets
contain the same 100 workspaces as the training sets, with
each having 200 problems, whereas the unseen sets consist of
ten workspaces with each having 2000 problems, which are not
observed during training. Fig. 3 (left) visualizes an example of
the problem in Simple2D dataset. Additionally, we generated
Complex2D dataset containing 100 workspaces with more
obstacles than Simple2D (Fig. 1 (bottom)). Note that we
only used the first 5 and 50 problems for each workspace
in seen and unseen sets, respectively, and excluded trivial
problems whose solutions were straight lines connecting start
and goal positions. As a result, the total number of problems
in Simple2D, Complex2D, and Complex3D were 229/240
(unseen/seen), 409, and 84/78 (unseen/seen), respectively.

B. Success rate

The success rates of 2D/3D path planning under various
settings are listed in Tables I-II (U/S denote unseen/seen
datasets). The sampling-based methods (a1–a12, c1–c12) show
higher success rates with larger number of iterations I as
expected due to their asymptotic optimality, i.e., they are more
likely to find a solution as they place more random nodes
inside a workspace and build a denser tree. BIT* achieves the
best success rates with smaller I among the other sampling-
based methods. As seen in a13–a14 and a16–a17, P3Net2D
achieves 24.0% and 22.7% higher success rates with 32.32x
fewer parameters than MPNet2D when the number of replan
attempts IRE is set to 10 and 50 (see Alg. 1), respectively.
Notably, P3Net with IRE = 10 (a16) already gives better
result than MPNet with more replan attempts (a14). In the
3D case (c13–c14, c16–c17), P3Net3D shows slightly better
results than MPNet3D with 5.43x fewer parameters. P3Net
generally outperforms RRT* and Informed-RRT*, and gives
results comparable to BIT* in a shorter period of time as
demonstrated in Section V-C. We also confirm that the FPGA-
based P3Net (a19–a21, c19–c21) maintains high success rates
as that of the CPU counterpart (a16–a18, c16–c18), despite
the use of a simpler pseudorandom generator (Section III-C)
and arithmetic errors introduced by the fixed-point format.
The results obtained from unseen/seen datasets (e.g., a17–a18)
demonstrate that the proposed models generalize well to a
variety of environments that are not observed during training.

We also consider the combination of PointENet and the
original PNet (P3Net-a, P3Net-c) to validate the effectiveness
of the proposed models. As hypothesized in Section III-A,
the PointNet-based feature extraction substantially improves
the success rate (a13–a14 and a22–a23) and allows to use
more shallower PNet models for trajectory planning without
compromising the success rate (a22–a23 and a16–a17). We
obtain the similar results in the 3D case as seen in c13–
c14, c22–c23, and c16–c17. P3Net was 74.08% successful



(IRE = 50) in Complex2D dataset; it outperformed MPNet
(38.14%) by a large margin in a more difficult problem setting.

TABLE I
SUCCESS RATES ON SIMPLE2D DATASET

# U/S Method I % # U/S Method IRE FPGA %
a1 U RRT* 50 3.06 a13 U MPNet 10 59.83
a2 U RRT* 100 15.28 a14 U MPNet 50 69.00
a3 U RRT* 250 66.81 a15 S MPNet 50 66.67
a4 U RRT* 500 91.27 a16 U P3Net 10 83.84
a5 U IRRT* 50 2.62 a17 U P3Net 50 91.70
a6 U IRRT* 100 16.16 a18 S P3Net 50 92.50
a7 U IRRT* 250 63.76 a19 U P3Net 10 ✓ 81.86
a8 U IRRT* 500 90.83 a20 U P3Net 50 ✓ 93.45
a9 U BIT* 50 74.67 a21 S P3Net 50 ✓ 96.25
a10 U BIT* 100 96.07 a22 U P3Net-a 10 78.17
a11 U BIT* 250 99.13 a23 U P3Net-a 50 89.08
a12 U BIT* 500 99.56 a24 S P3Net-a 50 91.67

TABLE II
SUCCESS RATES ON COMPLEX3D DATASET

# U/S Method I % # U/S Method IRE FPGA %
c1 U RRT* 50 0.0 c13 U MPNet 10 95.24
c2 U RRT* 100 2.38 c14 U MPNet 50 96.43
c3 U RRT* 250 38.10 c15 S MPNet 50 98.72
c4 U RRT* 500 77.38 c16 U P3Net 10 91.67
c5 U IRRT* 50 1.19 c17 U P3Net 50 97.62
c6 U IRRT* 100 3.57 c18 S P3Net 50 100.00
c7 U IRRT* 250 32.14 c19 U P3Net 10 ✓ 86.90
c8 U IRRT* 500 85.71 c20 U P3Net 50 ✓ 98.81
c9 U BIT* 50 100.00 c21 S P3Net 50 ✓ 98.72
c10 U BIT* 100 100.00 c22 U P3Net-c 10 96.43
c11 U BIT* 250 100.00 c23 U P3Net-c 50 97.62
c12 U BIT* 500 100.00 c24 S P3Net-c 50 98.72

C. Execution time

Table III presents the inference times of MPNet and P3Net
models (averaged over 10 runs). Since PointENet2D/3D in-
volve N times forward propagation of FC layers to compute
individual features for all N points (see Section III-B), they
have 3.70x/1.53x longer inference times than ENet2D/3D,
respectively. The FPGA-based implementation reduces the
inference time by 25.53x/25.74x, leading to 6.91x/16.78x
faster feature extraction than ENet2D/3D. SPNet2D/3D re-
quire 30.23x/2.33x less inference times than PNet2D/3D,
thanks to the shallower network structure. P3NetCore further
accelerates the computation by 5.52x/3.59x, which contributes
to the overall speedup of 167.0x/8.36x.

TABLE III
INFERENCE TIMES OF MPNET AND P3NET MODELS

ENet PNet CPU FPGA
PointENet SPNet PointENet SPNet

2D 43.58ms 101.87ms 161.09ms 3.37ms 6.31ms 0.61ms
3D 147.13ms 101.95ms 225.77ms 43.81ms 8.77ms 12.20ms

Table IV summarizes the distributions of execution times on
Simple2D and Complex3D datasets. Note that we chose path
planners from Tables I-II that produced the similar success
rates, and took only the successful planning problems into
consideration. For a fair performance comparison, we included
the data transfer overhead between PS and PL. As apparent,
the FPGA-based P3Net (a20, c20) is the fastest in terms
of mean and median values, making P3Net competitive to
the state-of-the-art sampling-based methods, while it requires
longer execution times in some challenging cases. Notably,
P3Net outperforms MPNet (a14, c14) on all metrics, indicating

that P3Net greatly improves the stability of the algorithm
by extracting more informative features and efficiently esti-
mating paths. In Complex2D dataset, the execution time of
MPNet and FPGA-based P3Net were 31.309s ± 49.994s and
2.336s±3.242s on average, respectively; the performance gain
increased in more difficult problems.

TABLE IV
EXECUTION TIMES ON 2D AND 3D DATASETS (IN SECONDS)

# Mean & Std Med Max # Mean & Std Med Max
a4 6.003± 1.027 5.847 11.102 c4 3.343± 0.334 3.292 4.424
a8 8.201± 3.433 7.194 34.210 c8 3.966± 0.636 3.916 6.738
a10 2.289± 0.586 2.343 5.088 c9 0.351± 0.240 0.319 2.327
a14 19.843± 37.901 1.946 217.244 c14 1.253± 2.424 0.459 18.824
a17 1.841± 2.848 0.718 20.530 c17 0.999± 1.611 0.407 9.994
a20 1.128± 1.995 0.414 16.255 c20 0.212± 0.418 0.064 3.024

Table V shows the speedup factors obtained using P3Net on
Simple2D and Complex3D datasets. We only considered the
successful cases as above. P3Net gives the median speedup
of 3.04x/1.20x and the average speedup of 22.22x/1.92x over
MPNet in 2D/3D cases (a14/a17, c14/c17), respectively. Our
FPGA-based implementation further improves the median
performance by 1.97x/7.72x and the average by 3.38x/12.37x
(a17/a20, c17/c20). Combining these results yields the median
speedup of 6.24x/9.34x and average speedup of 49.46x/14.09x.
Note that the larger difference between the mean and median
speedup factors implies that P3Net plans paths significantly
faster on some challenging problems, which also supports the
advantage of the proposed models. The FPGA-based P3Net
(a20, c20) is faster than all the sampling-based methods,
highlighting the efficiency of learning-based approach.

TABLE V
SPEEDUP FACTORS ON 2D AND 3D DATASETS

Mean & Std Med Mean & Std Med
a4/a20 21.242± 19.819 14.151 c4/c20 69.018± 54.418 56.008
a8/a20 33.590± 48.183 17.109 c8/c20 81.495± 66.791 68.871

a10/a20 8.189± 7.992 5.361 c9/c20 6.533± 6.054 4.053
a14/a17 22.220± 50.949 3.042 c14/c17 1.918± 2.510 1.197
a17/a20 3.384± 4.934 1.970 c17/c20 12.368± 19.717 7.723
a14/a20 49.462± 133.183 6.241 c14/c20 14.090± 18.743 9.340

The distributions of execution times are visualized in Fig.
10. Though the histogram of the CPU-based P3Net (blue) is
more spread out than BIT* (cyan), it has more weight on the
far left side, clearly indicating the performance advantage of
P3Net. Comparing CPU- and FPGA-based P3Net (blue and
red), we observe that the distribution has shifted to the left
(noticeable in the 3D case). Fig. 11 shows typical cases of the
execution time breakdowns. In MPNet2D (a14), the inference
of ENet and PNet (red + green) accounts 80.74% of the
execution time, which is reduced to only 3.93% in the FPGA-
based P3Net2D (a20). In MPNet3D (c14) and FPGA-based
P3Net3D (c20), 98.79% and 95.15% of the execution time
is spent on the inference respectively; though the inference
still occupies a large portion of the entire workload, P3Net
effectively improves the performance as seen in Fig. 11 (right).

D. Path cost

Fig. 12 plots relative costs of the output paths. We computed
a relative cost as a length of the estimated path relative to one
of the near-optimal path available in the dataset. The paths
produced by sampling-based methods tend to be jagged and



Fig. 10. Execution times (top: Simple2D, bottom: Complex3D). a4/c4: RRT*,
a8/c8: Informed-RRT*, a10/c10: BIT*, a14/c14: MPNet, a17/c17: P3Net
(CPU), a20/c20: P3Net (FPGA).
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Fig. 11. Execution time breakdown (left: Simple2D, right: Complex3D).
a14/c14: MPNet, a17/c17: P3Net (CPU), a20/c20: P3Net (FPGA).

not optimal, since they connect nodes in a tree which are
randomly placed during the exploration process. For a fair
comparison, we also perform the smoothing (see Section II)
in sampling-based methods. As seen in Fig. 12, P3Net (e.g.,
a17) is able to produce near-optimal paths in both 2D and
3D cases. We also confirm that the FPGA implementation
maintains the quality of solutions. In Fig. 12, MPNet2D (a14)
seems to give a smaller cost than P3Net2D (a17, a20), since
MPNet2D only solves problems for which optimal solutions
are easily obtained, and we only consider those successful
cases to compute cost. As described in Section V-B, P3Net2D
(a17) outperforms MPNet2D by a large margin in terms of the
22.7% higher success rate.

In Figs. 1-2, we show examples of paths obtained by CPU-
and FPGA-based P3Net planners (blue and red lines) along
with the ground-truth ones (gray lines). MPNet failed to plan
paths in the problems shown in Fig. 1 (bottom), while P3Net
found near-optimal paths that pass through narrow passages.

Fig. 12. Distribution of path cost (left: Simple2D, right: Complex3D).

E. FPGA resource utilization
Table VI summarizes the FPGA resource utilization of

P3NetCore. The on-chip buffers for model parameters and
layer input/outputs (Fig. 9) occupy a large portion of on-chip
BRAM and URAM resources, in exchange for the improved
access latency. In addition, P3NetCore consumes more than
half of the onboard DSP blocks to parallelize the matrix-vector
operations in FC layers. Since the utilization of FF and LUT
is low, we could also implement other parts of the algorithm,
e.g., collision checking, on the FPGA fabric to further improve
the performance. Note that our compact network design allows
to store a large part of parameters on the on-chip buffers and
benefit from the low access latency; the implementation of
original MPNet would require more DRAM buffers and thus
suffer from the data transfer overhead.

TABLE VI
FPGA RESOURCE UTILIZATION OF P3NETCORE

BRAM URAM DSP FF LUT
Available 312 96 1728 460800 230400

2D Used 198.5 80 888 33875 69333
Utilization % 63.62 83.33 51.39 7.35 30.09

3D Used 298 72 920 39140 80603
Utilization % 95.51 75.00 53.24 8.49 34.98

F. Power consumption
According to the post-place-and-route reports by Vi-

vado 2020.2, the power consumption of CPU and our
P3NetCore2D/3D are 2.212W, 1.223W, and 1.764W, respec-
tively. While the entire power consumption increases by 55.3%
and 79.7% when we employ P3NetCore2D/3D, the average
speedups of 3.38x and 12.37x (Table V) lead to the 2.18x and
6.88x improvements in energy efficiency, respectively.

VI. CONCLUSION

In this paper, we proposed P3Net, a novel learning-based
2D/3D path planning method, as an improvement to MP-
Net. P3Net leverages two types of DNNs: a PointNet-based
point cloud encoder and a lightweight planning network by
informed sampling, to better capture the obstacle information
and quickly find a collision-free path, while at the same time
substantially reducing the parameter sizes and computational
costs. We then presented an FPGA-based custom accelerator,
P3NetCore, and implemented it on the Xilinx ZCU104 board,
in order to fully exploit the parallelism in DNN computa-
tions and realize an efficient learning-based path planning
on resource-limited devices. Experimental results demonstrate
that P3Net outperforms MPNet in terms of success rate,
execution time, and algorithm stability. In the 2D/3D cases,
the FPGA-based P3Net achieves 24.45%/2.38% higher suc-
cess rates than the original MPNet with 32.32x/5.43x fewer
parameters and 6.24x/9.34x faster computation time, leading
to the 2.18x/6.88x better energy efficiency. We also confirm
that P3Net generalizes well to the unseen environments and
is able to produce near-optimal paths faster than the state-of-
the-art sampling-based methods, highlighting the advantages
of learning-based approaches.
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