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PAPER

An FPGA Acceleration and Optimization Techniques for 2D LiDAR
SLAM Algorithm∗

Keisuke SUGIURA†a), Nonmember and Hiroki MATSUTANI†b), Member

SUMMARY An efficient hardware implementation for Simultaneous
Localization and Mapping (SLAM) methods is of necessity for mobile au-
tonomous robots with limited computational resources. In this paper, we
propose a resource-efficient FPGA implementation for accelerating scan
matching computations, which typically cause a major bottleneck in 2D
LiDAR SLAM methods. Scan matching is a process of correcting a robot
pose by aligning the latest LiDAR measurements with an occupancy grid
map, which encodes the information about the surrounding environment.
We exploit an inherent parallelism in the Rao-Blackwellized Particle Filter
(RBPF) based algorithm to perform scan matching computations for mul-
tiple particles in parallel. In the proposed design, several techniques are
employed to reduce the resource utilization and to achieve the maximum
throughput. Experimental results using the benchmark datasets show that
the scan matching is accelerated by 5.31–8.75× and the overall throughput
is improved by 3.72–5.10× without seriously degrading the quality of the
final outputs. Furthermore, our proposed IP core requires only 44% of the
total resources available in the TUL Pynq-Z2 FPGA board, thus facilitating
the realization of SLAM applications on indoor mobile robots.
key words: SLAM, GMapping, SoC, FPGA

1. Introduction

Simultaneous localization and mapping (SLAM) technol-
ogy plays an indispensable role in autonomous robots, such
as autonomous driving cars and cleaning robots, and has
been a major research topic in robotics over the last two
decades. In order to operate in a previously unknown en-
vironment, autonomous robots need to estimate its vehicle
pose by matching the sensor observation against the current
map, while updating the current map based on the current
pose and sensor observation. Due to this structure of mutual
dependence between the robot pose and map, localization
and mapping cannot be handled independently from each
other. SLAM algorithms aim to solve these two problems
simultaneously.

The Bayes filter-based approach has been widely ap-
plied to the SLAM problem. The variation of Bayes fil-
ters including Extended Kalman Filter (EKF) [1] and par-
ticle filter are utilized in the process. FastSLAM [2], [3] and
GMapping [4] are the most popular methods among particle
filter-based approaches and are proven to work well in the
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literature [5]. GMapping is the grid-based LiDAR SLAM
based on Rao-Blackwellized Particle Filter (RBPF). It takes
odometry information and measurements from Light Detec-
tion and Ranging (LiDAR) sensors as input and generates
a sequence of robot poses (trajectory) and an occupancy
grid map, which discretize the surrounding environment into
equal-sized square cells.

Although SLAM is the key component and basis for
autonomous mobile robots, its high computational require-
ment emerges as a major problem when using SLAM in
these robots. SLAM requires high-end CPUs and sometimes
even GPUs to handle massive computations [6]–[8]. How-
ever, there is a situation where these CPUs and GPUs cannot
be mounted because of limited power budgets, costs, and
physical constraints (size or weight). Consequently, there
exists a strong demand for hardware accelerators to exe-
cute SLAM algorithms on such robots. Hardware offload-
ing brings certain benefits, e.g. performance improvement
without additional power consumption.

Particle filter is performed using a set of particles,
where each particle carries a single hypothesis of the current
state (i.e. robot trajectory and map). Fortunately, operations
on these particles are independent of each other; therefore
such an algorithm is suitable for FPGAs with parallel pro-
cessing capability. In this paper, an FPGA-based accelerator
for GMapping is proposed, by making use of the inherent
parallel properties in the algorithm. Experimental results
using benchmark datasets demonstrate that the FPGA ac-
celerator is a feasible solution for improving the throughput
without significantly degrading the accuracy.

The rest of this paper is organized as follows. Sec-
tion 2 presents a brief description for GMapping and its
theoretical foundation. In Sect. 3, related works for hard-
ware acceleration of RBPF-based SLAM algorithms are re-
viewed. In Sect. 4, the FPGA accelerator for GMapping
is proposed, and its architectural and algorithmic optimiza-
tions are described. Section 5 illustrates the implementation
details. Evaluation results in terms of throughput, accuracy,
resource utilization, and power consumption are shown in
Sect. 6. Section 7 concludes this paper.

2. Preliminaries

2.1 Rao-Blackwellized Particle Filter

Rao-Blackwellized Particle Filter (RBPF), an extension of
particle filter, is a powerful tool for solving the so-called
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full SLAM problem [4], [9], [10]. Full SLAM is expressed
in the form of the following posterior distribution (1) over
the state variables consisting of the robot map m = {mi}
and robot trajectory x1:t = {x1, . . . , xt}, conditioned on the
sequence of sensor observations z1:t = {z1, . . . , zt} and robot
controls u1:t = {u1, . . . , ut}.

p(m, x1:t |z1:t, u1:t) (1)

In particle filters, the above posterior (1) is represented by a
swarm of particles. A major drawback is that the number of
particles required to sufficiently approximate the posterior
grows exponentially with the dimension of the state space.
In the context of SLAM, state variables (i.e. robot pose and
map) usually reside in a very high-dimensional space (up
to tens of thousands of dimensions). Therefore, the origi-
nal particle filter cannot be applied since it would require an
enormous amount of particles. To address this, the poste-
rior (1) is decomposed into two terms as shown in Eq. (2)
using the chain rule, which correspond to the trajectory dis-
tribution, and the map posterior conditioned on the robot
trajectory, respectively [11].

p(m, x1:t |z1:t, u1:t) = p(x1:t |z1:t, u1:t)p(m|x1:t, z1:t) (2)

In RBPF, only the robot trajectory x1:t is estimated by a par-
ticle filter; that is, the set of particles tries to approximate
the posterior (target) distribution Pt over the trajectory

Pt ≡ p(x1:t |z1:t, u1:t)

= η p(zt |x1:t, z1:t−1)p(xt |xt−1, ut)Pt−1

� η p(zt |xt,m)p(xt |xt−1, ut)Pt−1 (3)

The map m is computed deterministically as a function of
the trajectory estimate x∗1:t and the observations z1:t. In this
case, the map distribution p(m|x1:t, z1:t) can be viewed as a
Gaussian with zero variance, where all probability mass is
concentrated at the particular point x1:t = x∗1:t. Hence, the
approximation in Eq. (3) holds, as below:

p(zt |x1:t, z1:t−1)

=

∫
p(zt |xt,m

′)p(m′|x1:t−1, z1:t−1)dm′

� p(zt |xt,m) (4)

Each particle individually carries the map as well as tra-
jectory, since the map depends on the estimated trajectory,
which differs for each particle. This factorization yields a
significant reduction of the number of particles (i.e. compu-
tational cost) because particles are drawn from the relatively
low-dimensional space Pt containing robot trajectory only.
The kth particle at time t, and the particle set at time t are
denoted as Y [k]

t = {x[k]
t ,m

[k], w[k]
t } and St = {Y [1]

t , . . . ,Y
[M]
t }

respectively, where M is the number of particles. RBPF fol-
lows the general Sampling Importance Resampling (SIR) al-
gorithm and is outlined by the following four steps.

In the first sampling step, a new particle pose x[k]
t is

sampled from the Gaussian motion model p(x[k]
t |x[k]

t−1, ut),
which represents the motion uncertainty usually caused by

sensor errors, wheel slippages or surface irregularities. At
this point, the set of the particle trajectories {x[k]

1:t } reflects
the prior (proposal) distribution Qt given in Eq. (5).

Qt = p(xt |xt−1, ut)Pt−1 (5)

Then, in map update step, the scan data zt is inserted into
each particle map m[k] based on the current particle pose
x[k]

t , which will be described in detail later. After that, in
weight update step, an importance weight associated to each
particle w[k]

t is updated based on the ratio between the target
Pt and proposal Qt:

w[k]
t = w

[k]
t−1

Pt

Qt
� η w[k]

t−1 p(zt |m[k], x[k]
t ) (6)

In (6), p(zt |m[k], x[k]
t ) is the observation likelihood which

models the underlying generating process of an observa-
tion given the map m[k] and current robot pose x[k]

t . In other
words, it represents the consistency of observed data zt with
a map and pose. Lastly, in resampling step, a new genera-
tion of particles St is obtained by resampling the particles
(allowing duplication) with probability proportional to the
importance weights. Particles with small weights are re-
moved and those with large weights are likely to dominate
the entire population. Particles {x[k]

1:t } now distribute accord-
ing to the desired posterior distribution Pt, which appears
in Eq. (2). Resampling process is crucial for transforming
the particle distribution from prior (proposal) to posterior
(target).

2.2 GMapping

GMapping is classified as the RBPF-SLAM algorithm and
is commonly used among the robotics community. It peri-
odically retrieves the latest robot control ut and scan data
zt = {zi

t} captured from a LiDAR sensor. It then builds a pla-
nar occupancy grid map m, in which each grid cell contains
a probability that the cell is occupied by an object. A sin-
gle observation zi

t = [ri
t, θ

i
t]
� is comprised of distance ri

t and
angle θit with respect to the sensor.

GMapping employs two strategies to reduce the com-
putational burden: improved proposal and adaptive resam-
pling. In the sampling step, a new particle pose x[k]

t is drawn
from the altered distribution (7) instead of the raw odometry
motion model p(xt |xt−1, ut).

p(xt |m, xt−1, zt, ut) =
p(zt |m, xt)p(xt |xt−1, ut)∫
p(zt |m, x)p(x|xt−1, ut)dx

(7)

The above distribution (7) also takes into account the latest
observation zt and is more peaked than the ordinary motion
model, thereby providing a highly accurate pose xt [4]. To
perform a sampling based on Eq. (7), the robot pose x′[k]

t is
initially sampled from the motion model p(xt |xt−1, ut) and
then is refined so that the current scan zt and map m[k] max-
imally overlap each other. This alignment is called scan
matching, and involves the maximization of the likelihood
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function formalized as below.

x[k]
t = arg max

x
p(x|m[k], zt, x

′[k]
t ) (8)

It leads the particles to be located in a more meaningful area
with higher observation likelihood, thus reducing the num-
ber of particles and improving algorithmic efficiency. The
proposal now takes the following form

Q′t = p(xt |m, xt−1, zt, ut)Pt−1. (9)

The importance weight is then computed as follows

w[k]
t = w

[k]
t−1

Pt

Q′t

= η w[k]
t−1

p(zt |x[k]
t ,m

[k])p(x[k]
t |x[k]

t−1, ut−1)

p(x[k]
t |m[k], x[k]

t−1, zt, ut)

= η w[k]
t−1

∫
p(zt |m[k], x)p(x|x[k]

t−1, ut)dx. (10)

Since the observation likelihood has a much smaller vari-
ance than the motion model, the integral above may be eval-
uated around the maximum of the likelihood, x[k]

t , which is
already obtained as a result of scan matching. Consequently,
the weight computation (10) is further simplified to Eq. (11).

w[k]
t � η w[k]

t−1 p(zt |m[k], x[k]
t ) (11)

Resampling is only performed when the effective sample
size in Eq. (12) falls below the threshold value Mth.

Meff =
1∑

k

(
w[k]

t

)2 (12)

Meff can be interpreted as the accuracy of the proposal. It
reaches its maximum value M when all weights are identical
(w[k]

t = M−1), that is, the proposal distribution fully reflects
the target distribution. An excessive variance of the impor-
tance weights incurs a small Meff . Especially when Meff is
large, resampling is unnecessary since the current particle
set is assumed to represent the target distribution effectively.
The adaptive resampling technique enables to retain the di-
versity of hypotheses and thus mitigates the risk of the par-
ticles around the correct state being removed, also known as
particle deprivation (depletion).

Algorithm 1 summarizes the overall algorithm of
GMapping, where the symbol ⊕ denotes the composition
operator [12] and ε is the zero-mean Gaussian noise.

The function AddScan(m, xt, zt) incorporates the scan
data zt into the map m using the robot position xt. It trans-

forms each scan zi
t =
[
ri

t, θ
i
t

]�
from the sensor coordinate

to the map coordinate and computes the hit point (also re-
ferred to as the beam endpoint) pi

t. Then it determines the
hit grid cell that contains pi

t and missed grid cells that lie
on the straight line connecting pi

t and xt using Bresenham’s
algorithm. Binary Bayes filter is applied to these grid cells
and their occupancy probabilities are incrementally updated.
The probability values associated with missed cells are low-
ered since they are less likely to be obstructed (laser rays
just went through these cells), and opposite for the hit cell.

Algorithm 1 GMapping Algorithm
1: function GMapping()
2: t ← 1, S0 ← ∅
3: for k = 1, . . . ,M do � Initialize particle set
4: S0 ← S0 ∪

{
x0,m0,M−1

}
5: � Set initial pose, empty grid map, and initial weight

6: while {ut , zt} exists do � Consume sensor data
7: St ← Process(St−1, zt , ut), t ← t + 1
8: k∗ ← arg maxk

{
w[k]

t

}
9: � Choose the best particle with largest importance

10: return x[k∗]
1:t ,m

[k∗]

11: � Return the most plausible trajectory and map

12: function Process(St−1, zt , ut)
13: St = ∅ � Initialize new particle set
14: for each Y [k]

t−1 ∈ St−1 do

15: x′ ← x[k]
t−1 ⊕ ut + ε � Initial guess

16: x[k]
t ← arg maxx p(x|m[k], zt , x′) � Scan matching

17: m[k] ← AddScan(m[k], x[k]
t , zt) � Update map

18: w[k]
t ← η w[k]

t−1

∫
p(x|x[k]

t−1, ut)p(zt |x,m[k])dx

19: � Update weight
20: St ← St ∪

{
x[k]

1:t ,m
[k], w[k]

t

}
� Add to new particle set

21: Meff =

[∑
k

(
w[k]

t

)2]−1

22: � Compute effective sample size
23: if Meff < Mth then
24: St ← Resample(St) � Resample if necessary

25: return St

3. Related Work

There are several works on accelerating RBPF-based SLAM
methods for embedded platforms by exploiting their par-
allel nature [13]–[17]. Abouzahir et al. quantitatively an-
alyzed execution times of SLAM algorithms under vary-
ing parameter settings and concluded that FastSLAM 2.0
is preferable for the low-cost embedded systems in terms
of the real-time performance and consistency of out-
put results [18]. Their implementation of the Monocular
FastSLAM 2.0 targeting CPU-FPGA heterogeneous archi-
tectures outperformed those run on high-end CPU or GPU
and demonstrated the feasibility of FPGA as an accelera-
tor in the domain of SLAM. FastSLAM 2.0 is also a vari-
ant of the RBPF-based method as GMapping [3]. The pri-
mary difference is that FastSLAM 2.0 builds a feature-based
map, consisting of the features of landmarks recognized by
robots, while GMapping constructs a grid-based map.

Both map representations are widely used; however,
the former requires the feature extraction and detection from
sensor inputs, i.e., prior knowledge about the environment
structure. The main advantage of the grid-based map is its
flexibility, meaning that it can represent arbitrary objects
and thus no assumption of the environment is needed [19].
Also, occupancy state at any location is easily obtainable
owing to its dense data structure, making it a convenient for-
mat for other tasks such as navigation and motion planning,
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which are based on pathfinding algorithms. From the as-
pect of the scan matching using LiDAR data, the matching
between a scan and a grid map (often referred to as scan-
to-map) generally produces accurate and robust alignments
than the matching between two scans (scan-to-scan) [6].

The major drawback of the grid-based map is that it de-
mands a large amount of memory in exchange for its dense
representation [19]. This problem is even more critical in
RBPF-based SLAM, because each particle keeps its individ-
ual map, which means that the memory consumption grows
quadratically to the map size and also proportionally to the
number of particles. However, several techniques are pro-
posed to mitigate the problem by sharing a part of grid map
among multiple particles [10], [20], [21], exploiting the im-
plicit redundancy in the particle maps. That is, multiple
identical copies of a single particle map are created during
a resampling process, but only tiny fractions of them are
modified and large parts remain unchanged. In our software
implementation, the map sharing technique similar to [20] is
applied to reduce the memory consumption and to increase
the maximum number of particles. These techniques are ef-
fective especially when the RBPF-SLAM is being run on a
resource-limited platform. From the above considerations,
the grid-based approach is focused in this paper. To the best
of our knowledge, this is the first work that presents FPGA
design for grid-based RBPF-SLAM.

Gouveia et al. proposed a multithreaded version of
GMapping using the OpenMP library, and high map preci-
sion was gained by increasing the number of particles with-
out sacrificing the latency [22]. Li et al. also examined an
acceleration of GMapping leveraging several parallel pro-
cessing libraries [23]. The above-mentioned works focus on
GMapping acceleration from the software aspects. In this
paper, on the other hand, we investigate the FPGA imple-
mentation of GMapping for the first time and propose op-
timization methods to achieve resource efficiency and high-
performance.

4. Design Optimization

In Sect. 4.1, we first provide a reason for choosing the scan
matching part as a target of the hardware acceleration. We
then thoroughly describe the algorithm for scan matching in
Sect. 4.2 and three optimization techniques adopted in the
hardware implementation in Sects. 4.3–4.5.

4.1 Parallelization of Scan Matching

As described in Sect. 2.2, the algorithm is divided into
five main parts: initial guess, scan matching, map udpate,
weight update, and resampling. Its notable feature is that
all the operations except resampling can be performed si-
multaneously for multiple particles. Scan matching is the
process of superimposing a scan on a grid map, i.e. it tries
to find the most suitable alignment so that a map and a
scan projected onto a map maximally overlap each other.
It inevitably becomes time-consuming and computationally

Fig. 1 Parallelization of scan matching

intensive [24], since a large number of calculations (espe-
cially coordinate transformations) and random accesses to
the map are required. Performance evaluations in Sect. 6
reveal that scan matching accounts for up to 90 % of the to-
tal execution time, clearly posing a major bottleneck. Scan
matching is the most reasonable candidate for hardware ac-
celeration in terms of the expected performance gain. In this
paper, as illustrated in Fig. 1, scan matching is executed in
parallel on an FPGA device and other necessary computa-
tions are handled on the CPU side, thus utilizing the hetero-
geneous SoC architecture.

4.2 Greedy Endpoint Matching Algorithm

The software implementation used in this paper is based on
the open-source package provided by OpenSLAM [25]. In
the OpenSLAM GMapping package, a metaheuristic hill-
climbing based algorithm called Greedy Endpoint Match-
ing [26] is executed during the scan matching process. It
is worth noting that more sophisticated algorithms like
branch-and-bound based method [6] and correlation-based
method [27] can be applied for scan matching. Although the
hill-climbing method has a weakness that its performance
is negatively affected by the poor initial estimates and is
susceptible to local optima [27], a comparison of the scan
matching algorithms’ performance is outside the scope of
this paper.

The hill-climbing algorithm corrects a particle pose xt

by aligning a scan data zt =
{
zi

t

}
with a map m. More

concretely, a particle pose xt that maximizes a matching
score s(xt,m, zt) is continually explored until a convergence
is reached. The matching score is regarded as the observa-
tion likelihood p(xt |m, zt, x′t ) as mentioned in Sect. 2, where
x′t denotes an initial estimate of a particle pose. In each it-
eration, the algorithm chooses an axial direction that most
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improves the score, and then the particle pose is updated by
a small step along that direction. The update step, which
is analogous to a learning rate in gradient descent optimiza-
tion, is halved if the score is not improved and no feasible
direction is found, and the algorithm ends if a convergence
criterion is met (i.e. the update step becomes sufficiently
small). The score s(xt,m, zt) is calculated according to the
following equation.

s(xt,m, zt) =
∑

i

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
(
di

t

)2
2σ2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
∑

i

u(di
t), (13)

where σ is the predefined standard deviation and summand
u(di

t) is the score for ith measurement zi
t. The di

t denotes the
distance between the ith scan point pi

t (described in Sect. 2)
and its closest obstacle registered in the map m. A smaller
value of d implies a small misalignment between the obser-
vation zt and the map m. Scan point pi

t of the ith observation
zi

t = [ri
t, θ

i
t]
� is computed by the coordinate transformation

from the sensor frame to the map frame under the current
pose xt = [ξx

t , ξ
y
t , ξ
θ
t ]� as follows.

pi
t =

[
ξx

t + ri
t · cos(ξθt + θ

i
t)

ξ
y
t + ri

t · sin(ξθt + θ
i
t)

]
∈ R2 (14)

The naive yet stable algorithm to find the minimum dis-
tance di

t is summarized in Algorithm 2. γ(xm) : R2 → Z2

is a function that converts the position in the map frame

xm =
[
ξmx , ξ

m
y

]�
to the corresponding grid cell index. It is

formulated as

γ(xm) =

[ 
(ξmx − ox)/Δ�

(ξmy − oy)/Δ�

]
∈ Z2, (15)

where Δ is a map resolution (grid cell size) and [ox, oy]�
denotes the position of the map origin (the position that cor-
responds to the grid cell with a minimum index (0, 0)), re-
spectively. γ−1(Cx,Cy) is the inverse of γ, written as

γ−1(Cx,Cy) =

[
ox +CxΔ

oy +CyΔ

]
∈ R2. (16)

Algorithm 2 first calculates the scan point pi
t and its closest

grid cell CH for each scan zi
t. It then calculates p̂i

t and CM in
the same way. p̂i

t is the point that is closer to the sensor by δ
than the scan point pi

t. The cell CM is therefore presumed to
be unoccupied and missed by the beam (i.e. CM should be-
long to the set of missed grid cells, because the laser beam
passed through the cell CM). Figure 2 (left) shows an exam-
ple of the positional relationship between pi

t and p̃i
t.

After that, it attempts to establish the matching be-
tween the observation zi

t and the map m. It utilizes a square
searching window of (2K + 1) × (2K + 1) cells, centered at
the CH (see Fig. 2 (left)). In our implementation, the radius
K is currently set to 1, yielding the 3 × 3 square searching
window. Every grid cell covered by the window is consid-
ered a candidate for containing the beam endpoint pi

t. That

Algorithm 2 Calculation of di
t

1: function FindMinimumDistance(xt ,m, zi
t)

2: pi
t ←
[
ξx

t + ri
t cos(ξθt + θ

i
t)

ξ
y
t + ri

t sin(ξθt + θ
i
t)

]
� Compute scan point

3: p̂i
t ←
[
ξx

t + (ri
t − δ) cos(ξθt + θ

i
t)

ξ
y
t + (ri

t − δ) sin(ξθt + θ
i
t)

]
� Compute point that seems unoccupied

4: CH ← γ(pi
t) � Compute hit cell index

5: CM ← γ(p̂i
t) � Compute missed cell index

6: d∗ ← ∞ � Initialize minimum distance

7: for kx = −K, . . . ,K do
8: for ky = −K, . . . ,K do

� For each cell in searching window
9: C̃H ← (CH

x + kx,CH
y + ky), pH ← m(C̃H)

10: C̃M ← (CM
x + kx,CM

y + ky), pM ← m(C̃M)
� Check occupancy probabilities of candidate cells

11: if pH > T and pM < T then
12: p′ ← γ−1(C̃H), d∗ ← min(d∗,

∣∣∣pi
t − p′

∣∣∣)
� Update minimum distance if criteria met

13: return d∗

Fig. 2 Scan point and its surroundings

is, pi
t might not reside in the CH but in proximity to the CH

because of the accumulated error in xt or the perturbation
in measurement zi

t. The searching window is to allow these
errors and to consider the case where pi

t does not exactly
correspond to CH.

Each cell in the searching window and its associated
occupancy probability are denoted as C̃H and pH, respec-
tively. The index of C̃H is given by adding a relative off-
set (kx, ky) to CH (refer to Fig. 2 (right)). The same applies
to pM and C̃M. For each cell C̃H, it is tested whether two
values pH and pM are within the desired ranges: (T, 1] and
[0,T ). These criteria are derived from the fact that C̃H and
C̃M should be hit and missed cell. If C̃H satisfies these cri-
teria, CH is the appropriate matching candidate and is ex-
pected to accommodate the scan point pi

t, meaning that pi
t

actually resides in C̃H and not CH. The distance between
pi

t and p′ is then calculated, where pi
t is the scan point ob-

tained from the current pose xt using Eq. (14), and p′ is its
corresponding point found on the map m, respectively. The
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minimum distance is selected for di
t if multiple grid cells

satisfy the criteria. Checking the value of pM, which is ex-
pected to be lower than the pH, effectively avoids the false
matching and hence contributes to the robustness.

The optimizations to realize the resource-efficient im-
plementation are threefold: (a) map compression, (b) effi-
cient access to map data, and (c) simplified score calcula-
tion.

4.3 Map Compression

The map resolution Δ is preferred to be set to a smaller
value, e.g. 0.01 m or 0.05 m, since it directly affects the
accuracy of the output map. More importantly, the RBPF-
based approach requires map hypotheses to be maintained
individually on each particle. The amount of memory
needed to store the map increases approximately to the
square of the map size, inversely to the square of the map
resolution Δ, and also proportional to the number of par-
ticles M. Typically, it ranges in the order of hundreds of
megabytes, especially when a considerable number of par-
ticles are used to deal with a mapping in a relatively large
environment. On an FPGA platform with limited hardware
resources, the amount of FPGA on-chip memory (BRAM)
is not enough for even storing one single map, and thus fre-
quent data transfer between the BRAM and an on-board
DRAM will be required. In addition, transferring such
amount of data imposes a massive overhead, which poten-
tially outweighs the advantage of hardware acceleration. As
a result, an effective way of reducing the map size should be
devised.

Considering the physical principle of a LiDAR sensor,
it is immediately apparent that only a fraction of the mapped
area is observable from a sensor at any iteration. This indi-
cates that the local map covering only the surrounding of
the robot can be utilized during the scan matching process
instead of the entire map, a significant part of which is even-
tually not used. Local map m̃ is essentially a cropped ver-
sion of the original map m. Local map for kth particle m̃[k]

is constructed by clipping an area of the predetermined size
of 2W × 2W grid cells from the map m[k], centering on the
grid cell (Cx,Cy) corresponding to the current pose x[k]

t (see
Fig. 3).

m̃[k] =
{
m[k](Cx + kx,Cy + ky)|kx, ky ∈ [−W,W)

}
(17)

This amounts to the approximation of proposal distribution
p(xt |m, xt−1, zt, ut) by substituting the map m with the local
map m̃ [10]. In the current implementation, Δ and W are
set to 0.05 m and 128, respectively, making a local map
12.8 m square. W should be selected so that almost every
scan point fits inside the local map; otherwise, the accuracy
of scan matching is seriously lost. The scan points that are
out of the local map are not taken into account in the score
evaluation (Eq. (13)) and the algorithm greatly suffers from
the resulting inaccurate score. In an environment densely
occupied with obstacles, smaller W is applicable, since the

Fig. 3 Entire grid map and local map

Fig. 4 Local map binarization

distance to the nearest obstacle (obtained as a scan data from
a laser scanner) tends to become relatively shorter. Use of
local maps clearly reduces both hardware amount and data
transfer latency. As a side benefit, each map can be viewed
as a fixed-size 2D array from the FPGA side, thus facilitat-
ing data retrieval and processing. On the software, the map
is implemented as a variable-sized array and is dynamically
expanded when a robot enters previously unexplored areas,
whereas the size of the local map remains unchanged.

An occupancy value is stored in a double-precision
floating-point format in the software implementation. Ac-
cording to Algorithm 2, however, one can find that the
floating-point representation is completely redundant since
the value is only used for the comparison against the occu-
pancy threshold T ; the value itself is not of interest. For
this reason, occupancy values can be quantized into 1-bit
values by performing this comparison before being fed to
the FPGA scan matcher core (Fig. 4). This binarization re-
duces resource usage by up to 64× with no accuracy loss
and it finally becomes feasible to store local maps for multi-
ple particles on BRAM blocks for parallel processing. Also,
time-consuming DRAM accesses from inside of an FPGA
are fully eliminated and the data transfer overhead is sub-
stantially reduced. Overall latency is also reduced in the
way that a comparison between two floating-point numbers
(appears in Line 11 in Algorithm 2) is turned into a simple
bit operation.

4.4 Efficient Access to Map Data

As mentioned in Sect. 4.2, the searching window has the size
of 3 × 3 grid cells. Under this setting, one can observe that
the single execution of Algorithm 2 results in eighteen con-
secutive accesses to the grid cells in map m; nine for the hit
cells C̃H and the other nine for the missed cells C̃M. Mini-
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mizing the latency for the map data acquisitions (i.e. BRAM
accesses) is crucial because it resides in the innermost part
of the scan matching algorithm and thus it directly affects
the entire performance of the IP core.

An example of the typical access pattern that occurs
when sweeping a single searching window (consisting of
nine elements) is shown in Fig. 5 (left). In this case, in order
to obtain all nine elements in a single cycle, the map data
(2D array) needs to be completely partitioned along both di-
mensions, thereby eating up valuable memory resources. In
our FPGA scan matcher, however, the algorithm does not
follow the above access pattern; instead, it accesses the data
along a horizontal direction (with the vertical position being
fixed) as depicted in Fig. 5 (right). Apparently, the amount
of memory to store the map increases by 3×, since the map
now needs to contain duplicate elements to achieve this ded-
icated access pattern. The primary advantage of the modi-
fication of the data layout is that the algorithm can query a
searching window within a single clock cycle by partition-
ing the map along a horizontal axis only, without the neces-
sity of full partitioning. Avoiding the unnecessary partition-
ing is effective for reducing the resource usage. Despite of
the 3× increase of the memory footprint caused by allowing
redundancy, it is still possible to keep multiple grid maps on
BRAMs by combining the map binarization and cropping
technique presented in Sect. 4.3. In this way, the minimum
latency for the map data accesses is achieved, mitigating the
negative effects on the resource utilization.

4.5 Simplified Score Calculation

According to Algorithm 2, d′ is essentially the distance
d′ = |pi

t − p′| between the two grid cells CH and C̃H, which
correspond to the scan point pi

t and its actual point p′ on
the map m as described in Sect. 4.3, respectively. Inspecting
the following Eq. (18) reveals that d can be computed from
only the offsets kx, ky, and map resolution Δ by approximat-
ing pi

t with γ−1(CH); hence the absolute positions pi
t, p
′ are

unneeded.

d′ =
∣∣∣pi

t − p′
∣∣∣ � ∣∣∣γ−1(CH) − γ−1(C̃H)

∣∣∣
=

√
(CH

x − C̃H
x )2 + (CH

y − C̃H
y )2Δ

=

√
k2

x + k2
yΔ (18)

It turns out that d′ and u(d′) = exp(−d′2/2σ2) are discrete
functions of relative offsets kx, ky ∈ [−K,K]. Note that u(d′)

Fig. 5 Layout of map data on BRAM

is a scan matching score for a single observation that appears
in Eq. (13). A lookup table of size (2K + 1)2 that contains
the Gaussian u(d′) of every possible distance d′ (i.e. every
possible combinations of offsets kx, ky) can be computed be-
forehand. This lookup table can be fully partitioned and
mapped as registers, since it consists of only nine elements
when K = 1. This precomputation enables the effective
evaluation of the score s(x,m, zt) since the computation of
the Gaussian function in Eq. (13) is replaced by the single
query to the lookup table entry.

5. Implementation

We implemented a scan matcher IP core that performs the
aforementioned Greedy Endpoint Matching algorithm in
parallel using Xilinx Vivado HLS v2019.2 toolchain. We
chose Pynq-Z2 development board [28] as a target device
(Table 1), which is equipped with a programmable logic
and a dual-core embedded processor, to demonstrate that the
proposed core can be implemented in devices with severe re-
source constraints. The clock frequency of the IP core is set
to 100 MHz.

Figure 6 depicts a brief overview of the board-level im-
plementation. The Zynq processing system (PS) executes
our software implementation of GMapping algorithm (de-
scribed in Sect. 2) except the scan matching part, which is
offloaded to the programmable logic (PL) portion. The PS
passes the input data by communicating with the DMA con-
troller to initiate the scan matcher IP core. The DMA con-
troller automatically creates fixed-sized AXI4-Stream pack-
ets containing the input data on the DRAM and delivers
them to the IP core. It also receives the AXI4-Stream pack-
ets returned from the IP core and writes the extracted result
data to the specified address range of the DRAM.

The IP core takes the following inputs from the PS: (1)
initial guess of the N particle poses {x′[k]

t }, (2) N local maps
{m̃[k]}, (3) the latest sensor measurements zt = {zi

t}, and (4)
additional parameters, where N is a parallelization degree.
(4) includes the relative position of the local map m̃[k] with
respect to the entire map m[k]. The IP core then sends back

Table 1 Specifications of Pynq-Z2 board

OS Pynq Linux (based on Ubuntu 18.04)
CPU ARM Cortex-A9 @ 650MHz × 2
FPGA Xilinx Zynq XC7Z020-1CLG400C (Artix-7)
DRAM 512MB (DDR3)

Fig. 6 Board level implementation
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Fig. 7 Design of scan matcher IP core

(5) N refined particle poses {x[k]
t } and (6) final score val-

ues {s(x[k]
t ,m

[k], zt)} associated to N particles to the PS; the
latter can be used for weight computation. To complete the
scan matching process for all particles, the IP core should
be repetitively invoked for M/N times, where M is the to-
tal number of particles used. The input data that is shared
among all particles (i.e. (3) and (4)) is transferred only once
at the beginning of the scan matching phase. The DMA con-
troller makes use of a high-performance port (HP Port) on
the board and also adopts AXI4-Stream protocol for high-
speed transmission of most of the input (1)–(3) and output
(5)–(6). The other necessary parameters (4) are transferred
via AXI4-Lite interface. At the beginning of the software
implementation, the bitstream (binary image) of the IP core
design is dynamically loaded to the PL using Linux kernel
FPGA manager.

Figure 7 illustrates the block diagram of the proposed
scan matcher core. The top module consists of two sub-
modules, each of which computes the refined pose x[k]

t and
the score value s(x[k]

t ,m
[k], zt) for a single particle based on

the Greedy Endpoint Matching algorithm, given the initial
pose x′[k]

t and the local map m̃[k]. As a result, the IP core per-
forms the scan matching for two particles at the same time,
resulting in a parallelization degree of N = 2. Through-
out our implementation, all the decimal numbers are repre-
sented by 32-bit fixed-point format with 16-bit signed inte-
ger and 16-bit fractional parts. These bitwidths are deter-
mined to preserve the adequate precision for values such as
the linear and angular component of particle poses; however,
the search for the optimal fixed-point number expression de-
pends on a given application (or a surrounding environment)
and is beyond the scope of this paper.

It is worth mentioning that, in the software implemen-
tation of the scan matching, the particle pose is repeatedly
updated until it satisfies the convergence condition (i.e. up-
date step of the particle pose is below the preset threshold,
or the number of iterations exceeds the maximum). Con-
versely, in our IP core, the number of the optimization itera-
tions is fixed (e.g. 25) in order to equalize the computational
loads (latency) of all particles and realize the parallel exe-
cution. It is one of the (4) additional parameters as noted
above and thus can be set from the processing system be-
fore invoking the IP core. We set this to 25 in all evaluations
conducted in Sect. 6. Accordingly, the IP core maintains
constant latency cycles as long as the number of particles is
kept. Although this limitation typically causes the undesir-

able accuracy loss of the results, we observed that in most
cases, the number of iterations is less than 25-30 and the av-
erage is around 10–15. Also, we did not see a significant
degradation in terms of accuracy as shown in Sect. 6.

6. Evaluations

In this section, the proposed scan matcher IP core is evalu-
ated in terms of algorithm latency, accuracy, FPGA resource
utilization, and power consumption in comparison with the
software implementation.

6.1 Experimental Setup

As a baseline, the entire GMapping algorithm is executed
only with a CPU (ARM Cortex-A9 processor), which is
denoted as CPUM (CPU, M particles) in this experiment.
Then, the algorithm is executed with the CPU in cooperation
with our IP core; that is, the CPU executes the software im-
plementation of GMapping except the scan matching part,
which is handled by our IP core. We refer to this experimen-
tal setting as FPGAM (FPGA, M particles). The software is
developed in C++ and compiled using GCC 7.3.0 with -O3
compiler flag to fully optimize the executable code.

The subset of publicly available Radish dataset [29],
namely Intel Research Lab (Intel, 28.5m × 28.5m), ACES
Buliding (ACES, 56m × 58m), and MIT CSAIL Building
(MIT-CSAIL, 61m × 46.5m) is used for the benchmarking
purpose. We chose these three datasets since they capture
relatively small environments in which we expect our sys-
tem to be run. The ground truth information is unavailable
in these datasets; they only contain the sequence of sensor
observations and odometry robot poses, making quantitative
comparisons difficult. To measure the accuracy of output
results (robot trajectories), we adopt the following perfor-
mance metric proposed in [12].

εt−1,t = (xt � xt−1) � δ∗t−1,t (19)

εtrans =
1
T

∑
t

||trans(εt−1,t)|| (20)

εrot =
1
T

∑
t

|rot(εt−1,t)| (21)

σ2
trans =

1
T

∑
t

(||trans(εt−1,t)|| − εtrans
)2 (22)

σ2
rot =

1
T

∑
t

(|rot(εt−1,t)| − εrot
)2 , (23)

where � denotes the inverse composition operator, i.e. x � y
represents the relative transformation between two poses
x and y. Two helper functions trans(x) and rot(x) split a
given pose x = [ξx, ξy, ξθ]� into two translational compo-
nents (ξx, ξy) and an angular component (ξθ). || · || is a norm

function (
√
ξ2x + ξ

2
y) and | · | is an absolute value (|ξθ|). The

above metric computes the average and the standard devi-
ation of discrepancies between two relative poses xt � xt−1
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Fig. 8 Comparison of latency (M = 32)

and δ∗t−1,t; the former is the relative pose between temporally
adjacent poses xt and xt−1, both of which are obtained from
the trajectory result x1:T . The latter is the ground truth rela-
tion extracted by manually matching the sensor observations
(available at [30]). We also use the above metric to evaluate
the difference (closeness) between the trajectories obtained
from CPUM and FPGAM to confirm that our scan matcher
IP core achieves competitive accuracy compared to the soft-
ware implementation. We just substitute the δ∗t−1,t in Eq. (19)
with the relative pose x̂t � x̂t−1, where x1:T and x̂1:T denote
the trajectories from CPUM and FPGAM, respectively.

6.2 Algorithm Latency

Figure 8 shows the breakdown of the latency for a single it-
eration of the GMapping algorithm under two experimental
configurations (CPU32 and FPGA32). The results presented
here are the average of 5 executions. Note that the CPU-
FPGA data transfer overhead is included in the scan match-
ing latency for a fair comparison. We observed that most
of the execution time is dominated by scan matching and
map update processes; other processes contribute a negligi-
ble amount to the latency. The overall latency is effectively
reduced up to ×4.77 (MIT-CSAIL) as a result of offloading
the costly scan matching computations to the FPGA. For in-
stance, in the Intel dataset, scan matching process accounts
for 90.0 % of the total runtime in CPU32, representing a
major bottleneck, while it accounts for 62.8 % in FPGA32.
Though we adopted the high-performance streaming proto-
col, the data transfer still accounts for a large proportion of
the scan matching latency. We attribute this to the memory-
mapped I/O used to access the DMA controller registers
or to handle input/output data. This indicates that if the
overhead for memory-mapped I/O between PS and PL is
minimized, the speedup ratio can be improved, though the
software overhead for accessing/binarizing grid maps, and
initializing/manipulating IP cores through memory-mapped
I/O should also be reduced.

The relationship between the number of particles M
and the speedup ratio is plotted in Fig. 9. Our hardware im-
plementation achieves the approximately constant speedup

Fig. 9 Relationship between number of particles and speedup

Table 2 Comparison of accuracy (M = 32)

CPU32 FPGA32
ACES

translational (m) 0.0558 ± 0.0649 0.125 ± 0.490
rotational (rad) 0.0851 ± 0.319 0.0852 ± 0.319

Intel
translational (m) 0.115 ± 0.129 0.117 ± 0.130
rotational (rad) 0.0860 ± 0.284 0.0859 ± 0.284

MIT-CSAIL
translational (m) 0.0483 ± 0.0764 0.0505 ± 0.0795
rotational (rad) 0.0970 ± 0.387 0.0984 ± 0.387

but with slight increase (6.09–6.56× for ACES, 5.31–5.92×
for Intel, and 8.05–8.75× for MIT-CSAIL, see Fig. 9 (left))
under the varying number of particles, thus demonstrating
the scalability of our proposed system. The best speedup
effect is obtained in the MIT-CSAIL dataset, in which
the longest time is spent for scan matching computations
among three datasets in the software implementation, while
the latency of scan matching in our IP core remains con-
stant regardless of the dataset used (see Sect. 5). We ob-
served the same behavior in the overall speedup (3.99–
4.24× for ACES, 3.72–4.07× for Intel, and 4.76–5.10× for
MIT-CSAIL, see Fig. 9 (right)). Note that the slight increase
of the speedup noticeable in three datasets comes from the
slight performance degradation in the software implementa-
tion; we speculate that the consecutive accesses to the grid
maps for a relatively large number of particles leads the in-
creased cache miss rates in CPU. In MIT-CSAIL dataset, the
scan matching latency for a single particle is 104.18 ms and
113.06 ms when M = 16 and M = 64, respectively, which
means the increase of latency by 8.5 %.

6.3 Algorithm Accuracy

The accuracy of the output trajectories is measured based on
the metric proposed in [12]. Table 2 compares the transla-
tional error εtrans ± σtrans and the rotational error εrot ± σrot

obtained from FPGA32 against CPU32. This result presents
the favorable performance of the FPGA32 except for the
translational error in ACES dataset, which is due to its en-
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Table 3 Difference in output trajectories (M = 32)

ACES
translational (m) 0.0712 ± 0.127
rotational (rad) 0.00765 ± 0.00723

Intel
translational (m) 0.0505 ± 0.0705
rotational (rad) 0.0134 ± 0.0266

MIT-CSAIL
translational (m) 0.0495 ± 0.0641
rotational (rad) 0.0106 ± 0.0273

Fig. 10 Trajectories obtained from Intel Research Lab dataset

vironmental characteristics. ACES dataset mainly consists
of long straight corridors, which makes the results of the
scan matching (i.e. refined poses) unreliable; that is, the po-
sitional uncertainty in the longitudinal direction of the corri-
dor tends to become large. FPGA32 is more likely to suffer
from the occurrence of the unreliable scan matching than
CPU32, since it uses the fixed-point representation for dec-
imal values in the scan matching process, which introduces
the propagation and accumulation of rounding errors in ad-
dition to the quickly accumulating positional errors.

Table 3 shows the difference (closeness) between the
trajectories obtained from CPU32 and FPGA32, which is
computed by slightly modifying Eq. (19) as explained in
Sect. 6.1. Considering the map resolution (Δ = 0.05m) and
the angular resolution of the laser scanner (0.5◦, 1.0◦), it is
obvious that the difference between two output trajectories
is sufficiently small. The translational difference did not sur-
pass 0.1 m in all datasets, which is equivalent to only two
grid cells in a row. Despite the twofold increase of the trans-
lational error in ACES dataset (Table 2), we confirm that the
relative error (0.0712 m) is within an acceptable range.

Figure 10 shows the robot trajectories obtained from
CPU32 and FPGA32. The figure also shows the pure odom-
etry trajectory, denoted as Odom. The considerable over-
lap between CPU32 and FPGA32 implies that the accuracy
is not severely affected by introducing local maps as a part

Table 4 FPGA resource utilization of scan matcher IP core (post place-
and-route)

BRAM DSP FF LUT
Used 61 32 18,887 23,254

Available 140 220 106,400 53,200
Utilization (%) 43.6 14.6 17.8 43.7

of map compression technique (Sect. 4.3). The scan points
(obstacles) outside the local map are ignored in the score
evaluations (Eq. (13)), which causes erroneous scan match-
ing results especially when local maps are too small. In
FPGA32, the computation based on fixed-point expressions
introduces rounding errors, which would serve as a primary
source of precision loss. FPGA32 is also affected by the
limitation of the number of algorithm iterations (Sect. 5), by
which the robot pose is not fully optimized and hence the
cumulative error grows rapidly. Contrary to these concerns,
FPGA32 still generates the topologically correct map and
the underlying geometric relationship is maintained. In ad-
dition, the distortion and imprecision caused by these factors
seem subtle, which is the satisfying outcome.

6.4 FPGA Resource Utilization

Table 4 shows the FPGA resource utilization of our imple-
mentation, designed for Xilinx Zynq XC7Z020-1CLG400C
assuming 100 MHz operating frequency. On-chip BRAMs
are mostly consumed for the storage of local maps to exe-
cute the scan matching for multiple particles simultaneously,
which implies that the BRAM consumption increases al-
most linearly proportional to the degree of parallelization. In
our current design, the scan matching is parallelized for two
particles, and the BRAM usage is still less than 50 % due
to the map compression technique as described in Sect. 4.3.
Especially, the extreme quantization of the occupancy value
contributes to the resource reduction. The design uses cer-
tain amount of the LUT slices since mathematical opera-
tions (coordinate transformations) are frequently performed
on the core. Though the achievable speedup is constrained
by the total amount of BRAM and LUT resources present
on a device, results in Table 4 suggest that other parts of
the algorithm (i.e. importance weight calculation and initial
pose guess) can be mapped onto the hardware. There is also
enough room to increase the parallelization degree (e.g. 4)
to achieve the further performance improvement.

6.5 Power Consumption

We used an ordinary watt-hour meter to measure the power
consumption of the entire Pynq-Z2 board. Our board-
level implementation (FPGA32) consumed 2.9 W of power,
which is as same as the software-only implementation
(CPU32). We emphasize that FPGA32 outperforms CPU32
in terms of the total execution time (3.76× shorter) when
using Intel dataset as shown in Fig. 9.
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7. Conclusions

The hardware optimization of SLAM methods is of
crucial importance for deploying SLAM applications to au-
tonomous mobile robots with severe limitations in power de-
livery and available resources. In this work, we proposed
a lightweight FPGA-based design dedicated to accelerat-
ing the scan matching process in the 2D LiDAR SLAM
method called GMapping by exploiting the parallel struc-
ture inherent in the algorithm. The resource usage and the
overhead associated with the data transfers are effectively
reduced by applying the map compression technique, which
is the combination of map binarization and introduction of
local maps. The map data is stored with the acceptable level
of redundancy to enable the efficient data accesses thereby
minimizing the latency. Also, the precomputed lookup ta-
ble is employed to eliminate the expensive mathematical
computations. Experiments based on benchmark datasets
demonstrated that our hardware scan matcher avoids the
loss of accuracy and offers satisfactory throughput to that of
the software implementation. The proposed core achieved
5.31–8.75× scan matching speedup and 3.72–5.10× overall
speedup. As far as we know, this is the first work that fo-
cuses on the hardware acceleration of the grid-based RBPF-
SLAM.
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