
An Efficient Accelerator for Deep Learning-based
Point Cloud Registration on FPGAs

Keisuke Sugiura and Hiroki Matsutani
Dept. of ICS, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522

Email: {sugiura,matutani}@arc.ics.keio.ac.jp

Abstract—Point cloud registration is the basis for many robotic
applications such as odometry and Simultaneous Localization
And Mapping (SLAM), which are increasingly important for au-
tonomous mobile robots. The limitation of computational resources
and power budgets on such robots motivates us to study the
resource-efficient registration method on low-cost edge devices.
In this paper, we propose an FPGA-based novel pipeline for
3D point cloud registration built upon a recent deep learning-
based method, PointNetLK. Based on the profiling results, we
focus on the PointNet feature extraction as it becomes a major
bottleneck; we improve its scalability and memory-efficiency by
consuming each input point one-by-one in a pipelined manner
instead of processing the whole point cloud at once. We then
design a fully-parallelized and pipelined accelerator consisting of
a custom PointNet IP core, which fits within both low-cost and
mid-range FPGAs (e.g., Avnet Ultra96v2 and Xilinx ZCU104).
Experimental results show that our proposed pipeline achieves up
to 21.34x and 69.60x faster registration speed than the vanilla
PointNetLK and ICP, respectively, while only consuming 722mW
and maintaining the same level of accuracy.

Index Terms—Point Cloud Registration, PointNet, FPGA

I. INTRODUCTION

Point cloud registration is the key component for 3D recon-
struction and robotic applications, e.g., LiDAR (Light Detection
and Ranging) SLAM. It is the process of estimating a 3D
rigid-body transform that best aligns a pair of point clouds. In
LiDAR SLAM, a current robot pose is updated by matching two
consecutive point clouds acquired by a 3D LiDAR sensor, and
computing a relative rigid motion of the robot. Apparently, the
choice of registration method directly affects the performance
and accuracy of SLAM. Considering that such robotic applica-
tions have soft real-time constraints and are deployed on mobile
robots (e.g., micro UAVs) with limited resources and power, it
is of a crucial importance to develop a lightweight point cloud
registration pipeline targeting low-power mobile devices.

A myriad of registration methods have been proposed over
the past 30 years for improved accuracy and robustness. ICP
(Iterative Closest Point) [1] is the most widely-known method;
it alternates between finding point correspondences and com-
puting a rigid transform that minimizes Euclidean distances
between matched point pairs. Since the former involves a
nearest-neighbor search, ICP has a computational complexity
of at least O(N logN) (or O(N2)), where N is the number
of points. Another weakness is that ICP is sensitive to initial
estimates and can converge to spurious local minima unless the
initial estimate is sufficiently close to the global optimum.

Inspired by the tremendous success of deep learning, the
integration of deep learning into registration tasks has emerged
as a new research topic. Similar to ICP, some methods firstly
predict point correspondences by assigning weights (scores) to

Iteration 1 Iteration 9

Iteration 17 Iteration 26

Fig. 1. Examples of outputs from our proposed FPGA-accelerated registration
pipeline (Stanford bunny). PointNetLK, a backbone DNN for our registration
pipeline, was trained on the 20 categories (airplane to lamp) in ModelNet40
dataset. The pipeline successfully aligns a pair of bunny models which is
distinct from the training set, showing a generalization ability. A template (blue)
was rotated 90◦ around a random axis to generate a source (red).

all the point pairs using DNNs, and then use SVD (Singular
Value Decomposition) to find a rigid transform in closed form;
such correspondence search incurs a high computational cost
of O(N2). Other methods employ DNNs to directly estimate
transformation parameters from input point clouds; they are
still computationally intensive due to large number of param-
eters and complex network architectures, requiring GPUs and
desktop-grade PCs for real-time performance.

PointNetLK [2] is a recently proposed method based on
an entirely new approach, which combines the Lucas-Kanade
(LK)-based iterative optimization and PointNet feature embed-
ding. As PointNetLK does not rely on point correspondences
and uses a simple DNN (i.e., PointNet) for feature extraction, it
has O(N) computational cost and requires O(1) memory space.
This brings a better scalability and a significant performance ad-
vantage compared to the other learning-based methods, making
it well-suited for real-time applications on edge devices.

In this paper, we propose a fast and highly-efficient 3D
point cloud registration pipeline based on PointNetLK for edge
devices. We focus on a PointNet feature extraction as it presents
a major performance bottleneck, and improve its scalability
and memory-efficiency by optimizing the scheduling of com-
putations inside PointNet. Then, we design an FPGA-based
dedicated accelerator incorporating a fully-pipelined PointNet

IP core, and implement it on both low-cost and mid-range
FPGA SoCs. Experimental results demonstrate that our pro-
posed pipeline achieves significantly faster registration com-
pared to both vanilla PointNetLK and ICP, without degrading
the generalization ability and accuracy.

The rest of the paper is organized as follows: Section II
overviews related works. Section III formulates the registra-
tion problem and describes PointNetLK algorithm. Section IV
illustrates the design of our FPGA-based registration pipeline.
The evaluation in terms of speed, accuracy, resource utilization,
and power consumption is presented in Section VI. Section VII
concludes the paper.

II. RELATED WORKS

A. Deep Learning-based Point Cloud Registration

In the past few years, deep learning techniques have been
successfully applied to point cloud registration [2]–[5], out-
performing traditional geometry-based methods such as Iter-
ative Closest Point (ICP) [1], Normal Distributions Transform
(NDT) [6], and ICP variants [7], [8].

1) End-to-end approach: The common learning-based ap-
proach is to solve registration tasks in an end-to-end fash-
ion [9]–[13]. For instance, PCRNet [12] directly regresses a
3D rigid transform from a pair of point sets using PointNet
in a Siamese architecture. 3DRegNet [13] uses a stack of
ResNet blocks to compute a feature for each given point cor-
respondence, which is passed on to the CNN-based model for
pose estimation. The authors of [11] propose an unsupervised
method for jointly aligning a sequence of 2D point clouds and
building an occupancy grid map. Such an end-to-end strategy
comes with a major drawback; it usually requires a larger
dataset and a sophisticated network with millions of parameters
to accurately estimate the 3D transformation parameters directly
from noisy point clouds, hence making the training difficult
and time-consuming. In addition, they are not suitable for
deployment on the edge devices due to their high resource
requirements.

2) Correspondence-based approach: Another approach
combines a deep feature extraction and a conventional closed-
form pose estimation; a number of methods [4], [14]–[20] pre-
dict point correspondences and then perform SVD to compute
a rigid transform. DCP [14] combines a graph convolution and
an attention mechanism to extract point-wise features which
take into account both intra and inter point cloud information,
and computes a set of correspondences by matching these
features. DeepVCP [15] builds a DNN model based on Point-
Net and CNNs for per-point feature extraction and match-
ing. PRNet [16] deals with missing corresponding points and
achieve partial-to-partial registration. These correspondence-
based methods suffer from the lack of scalability; they consider
all the possible point pairs (i.e., soft correspondences) to
make DNNs fully-differentiable and trainable with a standard
backpropagation, leading to O(N2) computational complexity
and memory space. Besides, they are generally prone to missing
or incorrect correspondences, which frequently occur due to
shape ambiguity, noises, outliers, and occlusions in 3D point
clouds.

3) Lucas-Kanade (direct feature alignment) approach:
Aside from the above approaches, some methods perform
the iterative registration in the framework of LK algorithm.
PointNetLK [2] first extracts global features from the input
point clouds using PointNet, and then iteratively updates a 3D
rigid transform by directly aligning these features. To find an
update to the transform, it computes a Jacobian of the PointNet
feature with respect to transformation parameters using a finite-
difference approximation. Sekikawa et al. [21] replaces MLPs
in PointNet with look-up tables to eliminate the vector-matrix
operations, and accelerates PointNet feature embedding and
Jacobian computation in PointNetLK. Li et al. [5] proposes
to analytically compute a Jacobian by decomposing it into
two terms (feature gradient and warp Jacobian) instead of
approximating it to avoid numerical instabilities and improve
generalization capability. Importantly, PointNetLK and its vari-
ants do not depend on point correspondences; they directly
minimize the difference between global features of point clouds,
leading to lower computational complexity and memory space
(O(N) and O(1) as described in Sec. III). We opt to use
PointNetLK as a backbone for a fast, highly-efficient point
cloud registration pipeline in this paper.

B. FPGA-based Acceleration of Point Cloud Registration

Only a few works studied the FPGA-based acceleration of 3D
point cloud registration. Kosuge et al. [22] develop an accelera-
tor for the ICP-based object pose estimation, which is a critical
process in picking robots. They focus on the k-nearest neighbor
(k-NN) search, which constitutes a major bottleneck in ICP due
to its O(N logN) (or O(N2)) complexity, and devise a novel
hierarchical graph data structure for improved search efficiency.
The proposed accelerator combines a parallelized distance com-
putation unit and a dedicated sorter unit to speed up the graph
construction and NN search. Deng et al. [23] present an FPGA-
based accelerator for NDT. NDT [6] models point clouds as a
set of voxels, each of which represents the Gaussian distribution
of points. They introduce a new hierarchical data structure
to accelerate the voxel search operations. Eisoldt et al. [24]
implement Truncated Signed Distance Function (TSDF)-based
registration method and TSDF map update process onto the
FPGA logic circuit for efficient 3D LiDAR SLAM. These
works successfully demonstrate the effectiveness of FPGA
acceleration for well-established or geometry-based registration
methods. This paper is the first to explore the FPGA-based
registration pipeline built upon a deep learning method.

III. BACKGROUND

A. PointNetLK Algorithm

In this section, we briefly describe the PointNetLK algorithm.
We summarize the algorithm in Alg. 1 (refer to [2], [5] for more
details).

As shown in Fig. 1, the aim of point registration is to align
two 3D point clouds, referred to as a template PT and source
PS , by estimating a 3D rigid transform G ∈ SE(3) from PS to
PT . One classical and straightforward approach is to minimize
the Euclidean distances between corresponding point pairs,
which however requires a costly nearest neighbor search with at
least O(N logN) complexity. To avoid this, PointNetLK takes

another approach: it finds an optimal transform G such that
global features extracted from two point clouds are close to
each other, i.e., ϕ(G · PS) = ϕ(PT).
ϕ : RN×3 → RK denotes a PointNet that maps a point

cloud of N points into a K-D global feature1. The transform
G(ξ) = exp(ξ∧) is computed from a 6D twist ξ ∈ R6 via
the exponential map. The definition of wedge operator (∧) is
found in [25]. From the above notations, we can formulate the
registration problem as a minimization of the squared difference
between two PointNet features ϕ(G(ξ) · PS), ϕ(PT) with
respect to the 6D twist parameters ξ:

ξ∗ = argmin
ξ
|ϕ(G(ξ) · PS)− ϕ(PT)|2 . (1)

For efficiency, PointNetLK uses an inverse-compositional (IC)
formulation and swaps the roles of template and source. Instead
of following Eq. 1, it computes a twist ξ such that the rigid
transform G(ξ)−1 = exp(−ξ∧) from PT to PS minimizes the
difference between ϕ(PS) and ϕ(G(ξ)−1 · PT):

ξ∗ = argmin
ξ

∣∣ϕ(PS)− ϕ(G(ξ)−1 · PT)
∣∣2 . (2)

By applying the first-order Taylor expansion, we linearize the
term ϕ(G(ξ)−1 · PT):

ϕ(G(ξ)−1 · PT) ≃ ϕ(PT) + Jξ, (3)

where J ∈ RK×6 is a Jacobian of the PointNet feature ϕ(PT)
with respect to the twist parameters ξ:

J =
∂

∂ξ
ϕ(G(ξ)−1 · PT). (4)

Each column vector Ji ∈ RK (i = 1, . . . , 6) of J is computed
by numerical gradient approximation as follows (line 4):

Ji ≃
ϕ(exp(−tiei) · PT)− ϕ(PT)

ti
, (5)

where ti is an infinitesimal perturbation to the twist (e.g., 0.01)
and ei ∈ R6 is a unit vector whose i-th element is 1 and the
others are 0. By substituting Eq. 3 into Eq. 2, we can solve for
the optimal twist ξ as follows (line 8):

ξ = J† (ϕ(PS)− ϕ(PT)) , (6)

where J† = (J⊤J)−1J⊤ ∈ R6×6 is a pseudo-inverse of J (line
5). We transform the source PS using ∆G = exp (ξ∧) (lines
9-10) and proceed to the next iteration until convergence. The
final solution G is obtained as a product of all incremental
transforms, i.e., G = ∆Gn · · ·∆G2∆G1, where ∆Gk is the
estimate at the k-th iteration, and n is the number of iterations.

As seen in Eq. 5, the computation of J is expensive, as we
need to perturb a point cloud and compute PointNet features six
times in total. In the original formulation (Eq. 1), J is computed
by perturbing PS instead of PT , meaning that J should be
recomputed after transforming PS (line 10) at every iteration.
With the IC formulation (Eq. 2), J is computed only once at
the initialization phase (lines 3-5) and remains constant during
the optimization, hence greatly improving the computational
efficiency of PointNetLK.

1For ease of explanation, we assume that both point clouds contain the same
number of points N , i.e., PS ,PT ∈ RN×3.

Algorithm 1 Point cloud registration using PointNetLK (The
colored part is accelerated using FPGA.)
Require: PS ,PT ∈ RN×3, initial estimate G0 = I (optional),

PointNet encoder ϕ : RN×3 → RK

Ensure: Rigid transform G ∈ SE(3) from PS to PT

▷ Initialization step
1: Apply an initial transform: PS ← G0 · PS

2: Compute a PointNet encoding of template: ϕ(PT) ∈ RK

3: Perturb a template: ϕ(exp(−tiei) · PT), i = 1, . . . , 6
4: Compute a Jacobian: J ∈ RK×6 (Eq. 5)
5: Compute a pseudo-inverse: J† ← (J⊤J)−1J⊤

▷ Optimization step
6: for i = 1, 2, . . . , imax do
7: Compute a PointNet encoding of source: ϕ(PS)
8: Compute an optimal twist: ξi ← J† (ϕ(PS)− ϕ(PT))
9: Compute an update: ∆Gi ← exp (ξ∧i)

10: Transform the source: PS ←∆Gi · PS

11: if |ξi| < ε then ▷ Check convergence
12: break
13: return G = ∆Gi · · ·∆G2∆G1G0

PointNet [26] is a simple yet powerful network for point
cloud processing. The network consists of five fully-connected
layers (Fig. 3), each of which is followed by batch normaliza-
tion and ReLU activation, to extract K-D point-wise local fea-
tures from input points. The max-pooling layer is placed at the
end of network to aggregate point-wise features and compute a
global feature. One notable feature is that the computation for
each point is independent except the last max-pooling layer,
i.e., PointNet offers a massive data parallelism and are suitable
for FPGA acceleration. PointNet does not entail convolutions,
attention mechanisms or skip connections, leading to the ease of
implementation, and the number of network parameters is fairly
low (i.e., 0.15M) compared to the end-to-end methods (Sec.
II-A1). As PointNet directly takes in raw 3D point coordinates,
the preprocessing such as normal estimation are not required.
Despite the sparsity and irregularity of point clouds, PointNet
does not involve random accesses to input data and is suitable
for pipelining (Fig. 4). The computation and memory cost of
PointNet is O(N) and O(1) (so does PointNetLK), leading to
a significant advantage compared to the correspondence-based
methods (Sec. II-A2).

IV. METHOD

A. Overview of the Registration Pipeline

In this section, we first present a design of our registration
pipeline based on PointNetLK for FPGA SoCs. Our design
consists of a fully-pipelined and parallelized PointNet IP core,
since PointNet feature extraction (lines 2-3, 7 in Alg. 1)
constitutes a large portion of the execution time as shown in Fig.
9. We then describe design optimizations to exploit the intra-
and inter-layer parallelism in PointNet, and improve scalability
and memory-efficiency of the feature extraction.

Fig. 2 depicts a block diagram of our board-level design
for Xilinx Zynq UltraScale+ MPSoC family, which consists
of the processing system (PS) part and programmable logic

(PL) part. The proposed PointNet IP core and a Direct Memory
Access (DMA) controller are placed inside the PL part, which
compute a global feature ϕ(P) from an input point cloud
P = {p1, . . . ,pN} ∈ RN×3 upon a request from the PS
part (lines 2-3, 7 in Alg. 1 are offloaded to the PL part). The
PS part is in charge of setting up the IP core and triggering
a DMA controller. Other steps such as Jacobian computation
(e.g., lines 4-5 and 9-10 in Alg. 1) are also performed on the
PS part. For the high-speed data transfer, the DMA controller
is connected to a 32-bit wide high-performance slave port
(HPC port) and utilizes AXI4-Stream protocol (red lines in Fig.
2). The control registers are accessible through the AXI4-Lite
interface connected to a 32-bit wide high-performance master
port (HPM port, blue lines in Fig. 2).

Processing System (PS)

ARM
Cortex-A53

DDR
Memory

HPM
port

HPC
port

Programmable Logic (PL)

AXI DMA Controller

AXI
Interconnect

AXI
Interconnect

PointNet IP core
AXI4-Stream

AXI4-Lite

Control registers

◆ AXI4-Stream:
Input: point cloud, PointNet params
Output: global feature

◆

Fig. 2. Board-level design (Xilinx Zynq UltraScale+ MPSoC)

Our PointNet IP core has two operation modes: weight
initialization and feature extraction. In the weight initial-
ization mode, the IP core receives PointNet model parameters
(e.g., weight and bias) through the AXI4-Stream interface and
stores them to the on-chip BRAM buffer. The IP core returns
a nonzero 32-bit value as an acknowledgement message to
notify that the initialization is complete and the core is in
ready state. In the feature extraction mode, a 1024D global
feature ϕ(P) ∈ R1024 is firstly initialized with zeros. Then,
as illustrated in Fig. 3, the IP core receives a 3D coordinate
pi ∈ R3, i = 1, . . . , N for each point and computes a
1024D point-wise local feature ψ(pi) ∈ R1024 by propagating
through five consecutive MLP layers. The global feature ϕ(P)
is updated by taking the element-wise maximum of ϕ(P)
and ψ(pi) (Eq. 8). In this way, point-wise local features
{ψ(p1), . . . ,ψ(pN)} are aggregated into one global feature
ϕ(P). After the computation is done for all points, the current
ϕ(P) is returned to PS as a final result.

The most straightforward way for extracting a global feature
ϕ(P) is that, we first transfer the whole point cloud P from
PS to PL, compute local features V = {ϕ(p1), . . . ,ϕ(pN)} ∈
RN×K for all points at once, and aggregate them using max-
pooling at once (ϕ(P) = MaxPool(V)). Despite its simplicity,
this three-step approach has a clear drawback regarding the
FPGA implementation. It would consume a large part of the
scarce on-chip memory, as it requires O(N) memory space to
store intermediate layer outputs and local features V for all
points. As a result, the number of input points is limited by the

amount of available on-chip memory resources, which degrades
the scalability and memory-efficiency.

As described above, our PointNet IP core consumes each
point pi one-by-one sequentially, and thus requires a buffer
for storing layer outputs and a local feature ψ(p) for a single
point p. This substantially improves the memory-efficiency, as
the memory consumption is reduced from O(N) to just O(1).
The design is also flexible and scalable in a sense that it accepts
point clouds of any size (i.e., does not limit the number of input
points). Compared to the three-step approach, our design also
hides the data transfer overhead (Sec. IV-D).

B. Modules in the PointNet IP core
As shown in Fig. 3, the IP core is composed of three types

of layer modules: FC, BN-ReLU, and MaxPool. FC(K,L)
corresponds to a standard affine layer; it computes a L-D output
y = Wx+ b from a K-D input x ∈ RK , where W ∈ RL×K

is a weight and b ∈ RL is a bias term. BN-ReLU(K) combines
a batch normalization and a ReLU activation: given an input
x = [x1, . . . , xN]

⊤ ∈ RK , its output y = [y1, . . . , yN]
⊤ ∈ RK

is obtained as follows:

yi = max

(
0,

xi − µi√
σ2
i + ε

· wi + bi

)
(1 ≤ i ≤ K), (7)

where µi, σi are the mean and standard deviation estimated
from the training data, wi, bi denote the learnable weight and
bias, and ε is a small positive number (e.g., 10−5) to avoid
division by zero, respectively. In the actual implementation,
we precompute reciprocals of

√
σ2
i + ε on the CPU, to re-

place division with multiplication and eliminate square root
operations. MaxPool(K) updates a global feature ϕ(P) =
[ϕ1, . . . , ϕK]

⊤ ∈ RK using a point-wise local feature ψ(p) =
[ψ1, . . . , ψK]

⊤ ∈ RK as follows:

ϕi ← max(ϕi, ψi) (1 ≤ i ≤ K). (8)

As discussed in the following sections, we exploit both intra-
and inter-layer parallelism to minimize the latency.

3
64 64 64

128
1024

MLP
(3, 64)

MLP
(64, 64)

MLP
(64, 64)

MLP
(64, 128)

MLP
(128, 1024)

MLP FC BN-ReLU
Local

feature

MaxPool
(1024)

1024

Global
feature

Update:

PointNet

Repeat this process for all points

Fig. 3. Computation flow inside the PointNet IP core

C. Exploiting the Intra-layer Parallelism
FC(K,L) involves a matrix-vector multiplication y =

Wx + b between a weight W ∈ RL×K and an input
x ∈ RK , represented by two nested loops over K and L.
We unroll the inner loop over K by setting an unrolling
factor to B ≥ 1 to parallelize the multiplication between
weights wi,j , . . . , wi,j+B−1 and inputs xj , . . . , xj+B−1. The

intermediate values wi,kxk (j ≤ k ≤ j + B − 1) are then
accumulated using an adder tree, which takes logB iterations.
In this way, the number of iterations is reduced from KL to
L(K/B+logB), which amounts to roughly Bx speedup. This
approach requires B DSP blocks and the array partitioning of
W,x to increase the number of read operations per clock cycle.
We further reduce the latency by pipelining the inner loop. For
instance, FC(64, 64) modules for the second and third fully-
connected layers (see Fig. 3) are pipelined and parallelized
by setting B = 16, which results in the 16.3x speedup (i.e.,
latency is reduced from 8.39µs to 513ns). BN-ReLU(K) and
MaxPool(K) are easily parallelizable, as the computation for
each output element (yi or ϕi) is independent as seen in Eqs.
7-8. We set the unrolling factor B ≥ 1 to compute multiple
output elements (yi, . . . , yi+B or ϕi, . . . , ϕi+B) and obtain Bx
performance improvement.

D. Exploiting the Inter-layer Parallelism
We also exploit the coarse-grained task-level parallelism to

further improve the performance. As depicted in Fig. 4, the
layer modules work in a pipelined manner: this allows to over-
lap the computations for multiple input points and hide the data
transfer overhead. For instance, the fifth MLP layer (MLP5)
computes a 1024D local feature of the first point p1, while the
fourth MLP layer (MLP4) computes a 128D local feature of the
second point p2. We carefully choose a loop unrolling factor B
for each module to make the latency of all modules as even as
possible and maximize the effectiveness of pipelining. Table I
lists the unrolling factors and latencies (B and T) for modules
inside the core. As expected, FC(128, 1024) module for the last
fully-connected layer is a bottleneck of the pipeline: we use the
maximum possible value B = 128 to fully unroll the loop. For
the other modules, we adjust the unrolling factor B such that
their latencies do not exceed the one of FC(128, 1024).

TABLE I
UNROLLING FACTORS AND LATENCIES FOR LAYER MODULES

Module B T (µs) Module B T (µs)
FC(3, 64) 1 5.77 BN-ReLU(64) 1 0.68
FC(64, 64) 16 5.13 BN-ReLU(128) 1 1.32
FC(64, 128) 32 7.69 BN-ReLU(1024) 2 5.16
FC(128, 1024) 128 10.28 MaxPool(1024) 2 5.14

Recv MLP MaxPool

Recv MLP MaxPool

Recv MLP MaxPool

Recv MLP MaxPool

Global
feature

Fig. 4. Pipelined execution inside the PointNet IP core

V. IMPLEMENTATION DETAILS

We developed a custom PointNet IP core using Xilinx Vitis
HLS 2020.2, and used Xilinx Vivado 2020.2 for synthesis and
place-and-route. We chose Xilinx Zynq UltraScale+ MPSoC
devices, namely, Xilinx ZCU104 Evaluation Kit (XCZU7EV-
2FFVC1156) and Avnet Ultra96v2 (ZU3EG A484) as target

FPGA SoCs (Fig. 5), which integrate an FPGA and a mobile
CPU on the same board. The specifications of these FPGAs
are listed in Table II. They both run Ubuntu 20.04-based Pynq
Linux 2.7 on a quad-core ARM Cortex-A53 CPU running at
1.2GHz and have a 2GB of DRAM. We set the operation
frequency of our accelerator to 100MHz, which is a default
setting in the Vivado toolchain. To prevent the accuracy loss,
our design uses a 32-bit fixed-point format with 16-bit integer
part and 16-bit fraction part for both layer outputs and PointNet
parameters.

179.1mm × 149.8mm 85mm × 44mm

Fig. 5. FPGA boards (left: Xilinx ZCU104, right: Avnet Ultra96v2)

TABLE II
FPGA SPECIFICATIONS OF XILINX ZCU104 AND AVNET ULTRA96V2

Board BRAM DSP FF LUT
ZCU104 312 1728 460800 230400
Ultra96v2 216 360 141120 70560

We took the PointNetLK source code used in the original
paper [2], and modified it to offload PointNet feature extraction
(lines 2-3, 7 in Alg. 1) to our FPGA accelerator. The code is
implemented using Python 3.8.2 with PyTorch 1.10.2. For both
ZCU104 and Ultra96v2, PyTorch was compiled from source
using GCC 9.3.0 with ARM Neon intrinsics enabled to fully
take advantage of the quad-core CPU. We used the same setting
of hyperparameters as in the original code. The number of
training epochs is set to 250, and an infinitestimal perturbation
ti to 0.01 (Eq. 5). As an optimizer, Adam with a learning rate
of 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8 is adopted, and the
batch size is set to 32. The convergence criterion is |ξ| < 10−7

(line 11 in Alg. 1), where ξ is an update to the rigid transform
as described in Section III-A. PointNetLK model is trained on
a workstation equipped with Intel Core i9-9900X at 3.5GHz,
64GB DRAM, and GeForce GTX 2080 Ti.

Given an estimated and a ground-truth rigid transform
G,G∗ ∈ SE(3) from source PS to template PT , and a pair
of PointNet features ϕ(G ·PS),ϕ(PT), the training loss L(G)
is computed as follows:

L(G) =
∣∣GG∗−1 − I

∣∣2
2
+ λ |ϕ(G · PS)− ϕ(PT)|22 , (9)

where the first term represents the registration error, and the
second one is a regularization term, which encourages the
PointNet model to produce similar features for the similar (i.e.,
aligned) point clouds G · PS ,PT . λ is a weighting factor (set
to 1 in this paper). |A|22 denotes a sum of the squares of the
elements in a matrix A.

VI. EVALUATION

In this section, we quantitatively and qualitatively evaluate
the performance of our proposed FPGA-based registration

pipeline in terms of accuracy (Sec. VI-A), computation time
(Sec. VI-B), resource utilization (Sec. VI-C and VI-D), and
power consumption (Sec. VI-E).

A. Accuracy

We first compare the registration accuracy of our FPGA-
based registration pipeline in comparison with the PyTorch
implementation of PointNetLK and ICP [1]. Note that PyTorch
uses the single-precision floating-point format. As done in the
original paper [2], we trained PointNetLK on the training sets of
the first 20 object classes (airplane to lamp) in ModelNet40 [27]
consisting of 5144 CAD models, and tested on the test sets of
the same 20 classes consisting of 1202 CAD models.

For each CAD model, we extracted a template point cloud
PT from the vertices, and normalized the point coordinates to
fit inside a unit cube. We rotated PT around a random axis
by a constant angle 0◦ ≤ θ ≤ 90◦, and then translated it by
a random vector with each element uniformly distributed on
[0, 0.3) to generate a source PS . From a difference ∆G =
GG∗−1 between a ground-truth transform G∗ and an output
G, we computed (isotropic) rotational and translational errors.
A translational error εt is obtained as a norm of the translation
part in ∆G, i.e., εt = |(∆G)0:3,3|2 (Fig. 6 left). By taking a
norm of a rotation part in a 6D twist ∆ξ = log (∆G)

∨ ∈ R6,
a rotational error εr (Fig. 6 right) is obtained as εr = |∆ξ0:3|2
(∨ and log are the inverse of ∧ and exp in Sec. III-A).

We downsampled (or upsampled) the input point clouds as
necessary to fix the number of points N to 1024 for all data
samples. In both ICP and PointNetLK, the maximum number
of iterations was set to 20 for a fair comparison. Fig. 6 shows
the results with varying initial angles.

0 20 40 60 80
Initial Angle (deg)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Tr
an

sla
tio

na
l E

rro
r

ICP
PN (CPU, Same)
PN (CPU, Diff)
PN (FPGA, Same)
PN (FPGA, Diff)

0 20 40 60 80
Initial Angle (deg)

0

20

40

60

80

Ro
ta

tio
na

l E
rro

r (
de

g)

Fig. 6. Registration errors of our registration pipeline (FPGA) in comparison
with vanilla PointNetLK and ICP

Our proposed registration pipeline coupled with an FPGA
accelerator (magenta) achieves almost the same accuracy as
the software implementation (red), and provides better accuracy
than ICP for θ ≤ 50◦. For θ ≥ 60◦, PointNetLK did not
converge to correct solutions and showed larger rotational errors
than ICP. This is an expected behavior; during training, we
created a rigid transform exp (ξ∧) ∈ SE(3) between point
clouds from a 6D twist vector ξ with norm less than 0.8. In
other words, PointNetLK was never trained on point cloud pairs
with initial angles larger than 0.8 radians (45.9◦).

We also trained PointNetLK on the training sets of the first
20 classes (airplane to lamp) and tested on the test sets of
the last 20 classes (laptop to xbox) containing 1266 CAD
models. While it (cyan, green) shows a larger translational

error than PointNetLK trained and tested with the same classes
(magenta, red) for θ ≥ 60◦, it still achieves the same level
of accuracy especially in the rotation estimation. Besides, for
θ ≤ 50◦, the registration error is lower than ICP and closer
to that of PointNetLK in the previous setting. This indicates
that PointNetLK has a generalization ability to align objects
which are unseen during training. As shown in Fig. 6, our
registration pipeline (green) has almost the same accuracy
as the software counterpart (cyan), meaning that it yields
faster computation time without compromising the accuracy.
For qualitative analysis, we visualize the registration results
obtained from our registration pipeline for ModelNet40 and
Stanford bunny [28] in Figs. 1 and 7, respectively.

Iteration 0 Iteration 11

Iteration 0 Iteration 8

Fig. 7. Examples of outputs from our proposed FPGA-accelerated registration
pipeline (ModelNet40). To show the generalization ability, PointNetLK trained
on the first 20 object classes (airplane to lamp) was employed for the person
model (top), whereas the one trained on the last 20 categories (laptop to xbox)
was used for the airplane model (bottom). Red and blue points represent the
source and template, respectively. The initial rotation angle was set to 60◦.

B. Computation Time

Our FPGA-based registration pipeline is evaluated in terms
of the computation time to highlight its significant advantage
over ICP. Fig. 8 shows the results with the varying number
of input points N from 128 to 4096. We used the table
category in ModelNet40 and plotted an average wall-clock
time for registration. We included the data transfer overhead
between PS–PL for a fair comparison. The initial angle θ
is set to 30◦. We also note that PointNetLK was trained on
the first 20 categories in ModelNet40, which do not include
the table category. The wall-clock time increases linearly in
PointNetLK and quadratically in ICP, which reflects the O(N)
and O(N2) computational complexity of PointNetLK and ICP;
PointNetLK provides a better performance advantage over ICP
especially with a larger N . For N = 1024, the CPU version of
PointNetLK was 1.36x slower than ICP (5.47s and 4.04s). Our
FPGA-based pipeline (red) took only 366ms per input, which
was 14.98x faster compared to the CPU version (green), and
eventually lead to 11.04x speedup than ICP (blue). As shown in
Fig. 8, we obtained better results for N = 4096: compared to
ICP, the CPU version was 3.26x faster (71.16s and 21.82s), and

our FPGA-based pipeline was 69.60x faster, which is attributed
to the 21.34x speedup (21.82s to 1.02s).

Fig. 9 shows the breakdown of processing time for our
registration pipeline and the PyTorch implementation of Point-
NetLK. We set the initial angles θ to 30◦ (first two rows) and
60◦ (last two rows). PointNet feature extraction (red + green,
red refers to line 7, and green refers to lines 2-3 in Alg. 1)
is a major bottleneck, accounting for 91.90% (θ = 30◦) and
93.29% (θ = 60◦), which were reduced to 58.01% and 57.96%
by FPGA acceleration.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Points

0

20

40

60

Pr
oc

es
sin

g
Ti

m
e

(s
) ICP

PNLK (CPU)
PNLK (FPGA)

Fig. 8. Processing time of our registration pipeline (FPGA) in comparison with
vanilla PointNetLK and ICP

0 2 4 6
Processing Time (s)

CPU, 30 Deg
FPGA, 30 Deg
CPU, 60 Deg

FPGA, 60 Deg

PN (Src)
PN (Temp)
Other

Fig. 9. Breakdown of the processing time for our registration pipeline (FPGA)
in comparison with vanilla PointNetLK

C. Effects of Quantization
This section analyzes a relationship between the number of

quantization bits and accuracy. Fig. 10 shows the registration
errors evaluated under five different numbers of quantization
bits from 16 to 32. Table III summarizes the FPGA resource
utilization for Xilinx ZCU104 board. Each design uses the 2n-
bit fixed-point format with n-bit integer part and n-bit fraction
part (n = 8, 10, 12, 14, 16). We trained PointNetLK on the first
20 object classes and tested with the table class in ModelNet40.

As apparent in Fig. 10, the 16-bit quantized version exhibited
larger errors than the others. In contrast, for 0◦ ≤ θ ≤ 50◦,
the 20-bit version produced nearly the same results as the 32-
bit version. Even for θ ≥ 60◦, the reduction from 32 to 20-
bit only introduced a slight accuracy loss. Notably, the DSP
usage was halved by reducing from 32 to 24-bit (Table III).
The reduction from 24 to 20-bit further halved the DSP usage
(24.07% to 12.56%) and increased the LUT usage (9.91% to
12.87%). The results indicate that the 20-bit version strikes
the best balance between accuracy and resource consumption.
As seen in Table IV, the 20-bit version fits within a low-cost
FPGA, Avnet Ultra96v2, whereas the 32-bit version cannot be
implemented due to the shortage of DSP and LUT resources.

D. Effects of Design Optimization
Here, we discuss the effects of design optimizations de-

scribed in Section IV on the performance and FPGA resource

0 20 40 60 80
Initial Angle (deg)

0.00

0.05

0.10

0.15

0.20

Tr
an

sla
tio

na
l E

rro
r

16-bit
20-bit
24-bit
28-bit
32-bit

0 20 40 60 80
Initial Angle (deg)

0

20

40

60

80

Ro
ta

tio
na

l E
rro

r (
de

g)

Fig. 10. Registration errors and the number of quantization bits

TABLE III
FPGA RESOURCE UTILIZATION AND QUANTIZATION (XILINX ZCU104)

of Bits BRAM (%) DSP (%) FF (%) LUT (%)
32 55.13 48.50 5.46 16.31
28 55.13 48.09 4.73 13.70
24 44.87 24.07 4.05 9.91
20 44.23 12.56 3.85 12.87
16 27.40 12.21 2.83 7.74

utilization for Xilinx ZCU104 board. In addition to the final
design, we also consider a design without inter-layer pipelining
and a naive design with no optimization as a baseline. Fig. 11
plots the processing time with varying point cloud sizes from
N = 128 to N = 16384, and Table V compares the resource
utilization. In Fig. 11, we observe a linear increase of the pro-
cessing time, and the naive design (blue) is 3.49x slower than
the CPU (black) for N = 1024 (363.49ms and 1267.08ms).
By exploiting the intra-layer parallelism, the design (green)
attains a speedup of 34.46x (N = 1024) compared to the
unoptimized version (1267.08ms to 36.77ms) at the expense of
14.38x increase in the DSP usage (3.07% to 44.16%). The intra-
layer pipelining allows a further speedup of 4.29x (green and
blue, 36.77ms to 8.58ms) with a few additional resources, by
overlapping data transfer and computation. This leads to a total
performance improvement of 147.68x and 42.36x compared to
the unoptimized version and CPU counterpart for N = 1024,
respectively.

0 2000 4000 6000 8000 10000 12000 14000 16000
Number of Points

101

102

103

104

Pr
oc

es
sin

g
Ti

m
e

(m
s)

CPU
Naive

Inter-layer opt.
Intra- & inter-layer opt.

Fig. 11. Comparison of inference time of PointNet

E. Power Consumption

According to the report from Xilinx Vivado 2020.2, the
power consumption of our accelerator on Xilinx ZCU104 was
722mW, which is a quarter of the CPU one.

TABLE IV
FPGA RESOURCE UTILIZATION (AVNET ULTRA96V2)

of Bits BRAM (%) DSP (%) FF (%) LUT (%)
20 64.81 60.28 12.81 43.52
32 79.63 100.00 22.35 238.77

TABLE V
FPGA RESOURCE UTILIZATION AND DESIGN OPTIMIZATION (ZCU104)

Design BRAM (%) DSP (%) FF (%) LUT (%)
Naive 45.99 3.07 0.82 3.73
Intra-layer 54.17 44.16 4.56 10.66
Inter- & intra-layer 55.13 48.50 5.46 16.31

VII. CONCLUSION

We presented the first study of the resource-efficient FPGA-
accelerated pipeline for 3D point cloud registration based on
PointNetLK. We focused on a PointNet-based feature extraction
part as it constitutes the major bottleneck, and designed a cus-
tom accelerator for both low-cost and mid-range FPGAs (Avnet
Ultra96v2 and Xilinx ZCU104). We exploited both intra- and
inter-layer parallelism in PointNet to fully optimize the IP core
design, and also achieved O(N) computational complexity and
O(1) memory consumption by processing a point one-by-one
in a pipelined fashion. Experimental results demonstrated that
our FPGA-based registration pipeline achieved up to 21.34x
and 69.60x speedup compared to the software implementation
of vanilla PointNetLK and ICP, respectively, while consuming
only 722mW and maintaining the accuracy. Besides, our reg-
istration pipeline showed a better scalability than ICP and a
generalization ability to unseen object categories. As a future
work, it is necessary to compare with the other edge computing
platforms, e.g., NVidia Jetson Nano and Raspberry Pi Zero, to
investigate the effectiveness of our FPGA-based approach and
make evaluation results more comprehensive. The registration
speed could be further improved by optimizing the neural
architecture (e.g., reducing the number of MLP layers from
five to three) instead of using the vanilla PointNet as-is.

Acknowledgments This work was supported by JST
CREST Grant Number JPMJCR20F2 and JSPS KAKENHI
Grant Number JP22J21699.

REFERENCES

[1] P. J. Besl and N. D. McKay, “A Method for Registration of 3-D
Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 14, no. 2, pp. 239–256, Feb. 1992.

[2] Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, “PointNetLK: Robust
& Efficient Point Cloud Registration using PointNet,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019, pp. 7156–7165.

[3] G. Elbaz, T. Avraham, and A. Fischer, “3D Point Cloud Registration for
Localization Using a Deep Neural Network Auto-Encoder,” in Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017, pp. 4631–4640.

[4] A. Kurobe, Y. Sekikawa, K. Ishikawa, and H. Saito, “CorsNet: 3D
Point Cloud Registration by Deep Neural Network,” IEEE Robotics and
Automation Letters, vol. 5, no. 3, pp. 3960–3966, Feb. 2020.

[5] X. Li, J. K. Pontes, and S. Lucey, “PointNetLK Revisited,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 12 763–12 772.

[6] P. Biber and W. Straßer, “The Normal Distributions Transform: A New
Approach to Laser Scan Matching,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Oct.
2003, pp. 2743–2748.

[7] A. V. Segal, D. Haehnel, and S. Thrun, “Generalized-ICP,” in Proceedings
of the Robotics: Science and Systems Conference (RSS), June 2009.

[8] J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-ICP: A Globally Optimal
Solution to 3D ICP Point-Set Registration,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), vol. 38, no. 11, pp. 2241–
2254, Nov. 2016.

[9] J. Li, H. Zhan, B. M. Chen, I. Reid, and G. H. Lee, “Deep Learning for
2D Scan Matching and Loop Closure,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Sept.
2017, pp. 763–768.

[10] M. Valente, C. Joly, and A. de La Fortelle, “An LSTM Network for
Real-Time Odometry Estimation,” in Proceedings of the IEEE Intelligent
Vehicles Symposium (IV), June 2019, pp. 1434–1440.

[11] L. Ding and C. Feng, “DeepMapping: Unsupervised Map Estimation
From Multiple Point Clouds,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2019,
pp. 8642–8651.

[12] V. Sarode, X. Li, H. Goforth, Y. Aoki, R. A. Srivatsan, S. Lucey, and
H. Choset, “PCRNet: Point Cloud Registration Network using PointNet
Encoding,” arXiv Preprint 1908.07906, Aug. 2019.

[13] G. D. Pais, S. Ramalingam, V. M. Govindu, J. C. Nascimento, R. Chel-
lappa, and P. Miraldo, “3DRegNet: A Deep Neural Network for 3D Point
Registration,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020, pp. 7193–7203.

[14] Y. Wang and J. M. Solomon, “Deep Closest Point: Learning Represen-
tations for Point Cloud Registration,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), Oct. 2019, pp.
3523–3532.

[15] W. Lu, G. Wan, Y. Zhou, X. Fu, P. Yuan, and S. Song, “DeepVCP:
An End-to-End Deep Neural Network for Point Cloud Registration,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), Feb. 2019, pp. 12–21.

[16] Y. Wang and J. M. Solomon, “PRNet: Self-Supervised Learning for
Partial-to-Partial Registration,” in Proceedings of the Advances in Neural
Information Processing Systems (NeurIPS), Dec. 2019, pp. 8814–8826.

[17] Z. J. Yew and G. H. Lee, “RPM-Net: Robust Point Matching Using
Learned Features,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020, pp. 11 824–
11 833.

[18] C. Choy, W. Dong, and V. Koltun, “Deep Global Registration,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020, pp. 2514–2523.

[19] K. Fu, S. Liu, X. Luo, and M. Wang, “Robust Point Cloud Registration
Framework Based on Deep Graph Matching,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021, pp. 8893–8902.

[20] T. Min, E. Kim, and I. Shim, “Geometry Guided Network for Point Cloud
Registration,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp.
7270–7277, Oct. 2021.

[21] Y. Sekikawa and T. Suzuki, “Tabulated MLP for Fast Point Feature
Embedding,” arXiv Preprint 1912.00790, Dec. 2019.

[22] A. Kosuge, K. Yamamoto, Y. Akamine, and T. Oshima, “An SoC-
FPGA-Based Iterative-Closest-Point Accelerator Enabling Faster Picking
Robots,” IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp.
3567–3576, Mar. 2020.

[23] Q. Deng, H. Sun, F. Chen, Y. Shu, H. Wang, and Y. Ha, “An Optimized
FPGA-Based Real-Time NDT for 3D-LiDAR Localization in Smart
Vehicles,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 68, no. 9, pp. 3167–3171, July 2021.

[24] M. Eisoldt, M. Flottmann, J. Gaal, P. Buschermöhle, S. Hinderink,
M. Hillmann, A. Nitschmann, P. Hoffmann, T. Wiemann, and M. Por-
rmann, “HATSDF SLAM – Hardware-accelerated TSDF SLAM for
Reconfigurable SoCs,” in Proceedings of the European Conference on
Mobile Robots (ECMR), Aug. 2021.

[25] T. D. Barfoot, State Estimation for Robotics. Cambridge University
Press, 2017.

[26] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on
Point Sets for 3D Classification and Segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017, pp. 652–660.

[27] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3D ShapeNets: A Deep Representation for Volumetric Shapes,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[28] G. Turk and M. Levoy, “The Stanford 3D Scanning Repository,” http:
//graphics.stanford.edu/data/3Dscanrep/.

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/

	Introduction
	Related Works
	Deep Learning-based Point Cloud Registration
	End-to-end approach
	Correspondence-based approach
	Lucas-Kanade (direct feature alignment) approach

	FPGA-based Acceleration of Point Cloud Registration

	Background
	PointNetLK Algorithm

	Method
	Overview of the Registration Pipeline
	Modules in the PointNet IP core
	Exploiting the Intra-layer Parallelism
	Exploiting the Inter-layer Parallelism

	Implementation Details
	Evaluation
	Accuracy
	Computation Time
	Effects of Quantization
	Effects of Design Optimization
	Power Consumption

	Conclusion
	References

