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PAPER
Performance and Power-Efficiency Improvements on Graph
Embedding Using Sequential Training Algorithm and FPGA

Kazuki SUNAGA†a), Keisuke SUGIURA††b), Nonmembers, and Hiroki MATSUTANI†c), Member

SUMMARY Recently, graph structures have been utilized in IoT (In-
ternet of Things) environments such as network anomaly detection, smart
transportation, and smart grids. A graph embedding is a representation of
a graph as a fixed-length, low-dimensional vector, which can concisely rep-
resent the characteristics of the graph. node2vec is one of the well-known
algorithms for obtaining such a graph embedding by sampling neighbor-
ing nodes on a given graph using a random walk technique. However, the
original node2vec algorithm relies on a conventional batch training using
backpropagation algorithm. In other words, we have to retain the training
data to retrain the model, which makes it unsuitable for real-world applica-
tions where the graph structure changes after the deployment. To address
the changes of graph structures after the IoT devices are deployed in edge
environments, this paper proposes a combination of an online sequential
training algorithm and node2vec. The proposed model is implemented on
an FPGA (Field-Programmable Gate Array) device for efficient sequential
training. The proposed FPGA implementation achieves up to a 205.25 times
speed improvement compared to the original model on an ARM Cortex-
A53 CPU. We also evaluate the performance of the proposed model in the
sequential training task from various perspectives. For example, evalua-
tion results on dynamic graphs show that while the accuracy decreases in
the original model, the proposed sequential model can obtain better graph
embedding that achieves a higher accuracy even when the graph structure
changes. In addition, the proposed FPGA implementation is evaluated in
terms of the power consumption, and the results show that it significantly
improves the power efficiency compared to the CPU and embedded GPU
implementations.
key words: graph embedding, FPGA, OS-ELM, IoT

1. Introduction

Graph structures, in which nodes are connected by edges, can
be found everywhere in our lives. For example, friendships
in social networking services, user-item relationships on e-
commerce sites, and citation networks in academic papers
can all be represented as graph structures. Thus, applica-
tions that extract, analyze, and utilize information from graph
structures are in high demand. Although a graph structure
can be represented by an adjacency matrix, it is unsuitable for
direct use in statistical or machine learning-based methods
especially for large and sparse graphs. To address this issue,
a graph embedding has emerged as a representation so that
it can be directly used with statistical or machine learning
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methods.
Using the graph embedding, graph structures can

be represented with fixed-length, low-dimensional vectors.
node2vec [1] is a well-known algorithm for obtaining the
graph embedding by sampling neighboring node information
on a given graph using a random walk technique. However,
the original node2vec algorithm typically relies on batch
training, not online sequential training; thus, it is not suited
for applications where the graph structure changes after the
deployment. In this paper, we assume node2vec applica-
tions for IoT environments. To address the changes of graph
structures after the IoT devices are deployed in edge environ-
ments, we propose to combine an online sequential training
algorithm with node2vec. Since low-cost and low-power ex-
ecution is essential for such IoT applications, the proposed
sequential model is implemented on an FPGA device to sig-
nificantly reduce the training time in the deployed environ-
ment. We also compare our FPGA implementation with an
embedded GPU implementation. The major contributions
of this paper are summarized as follows∗:

1. To train the graph embedding sequentially, we combine
node2vec with an online sequential training algorithm
and then accelerate it using FPGA.

2. To combine node2vec with the online sequential algo-
rithm and lighten the model for FPGA implementation,
we utilize scale-multiplied output-side weights for the
input-side weights in our proposed model.

3. To further accelerate the FPGA implementation, we
modify the original sequential training algorithm to be
complied with a dataflow optimization.

4. To demonstrate benefits of the FPGA implementation,
it is compared with the CPU and embedded GPU im-
plementations in terms of the performance and power
efficiency.

The rest of this paper is organized as follows. Section 2
introduces related works. Section 3 proposes a sequentially-
trainable graph embedding model and its FPGA-based ac-
celerator. It also illustrates the FPGA implementation. Sec-
tion 4 evaluates the model and the accelerator in terms of

∗This paper is an extended version of our previous work pre-
sented at an international workshop [2]. This edition includes more
explanations about the hardware implementation and compares the
FPGA implementation with the CPU and embedded GPU imple-
mentations in terms of the performance and power efficiency. We
also analyze the execution time breakdown of our FPGA imple-
mentation and the impacts on update frequency of the sampling
table.
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the execution time, accuracy, model size, FPGA resource
utilization, and power consumption. Section 5 summarizes
our contributions.

2. Related Work

2.1 node2vec Algorithm

node2vec [1] is a well-known algorithm for obtaining a graph
embedding. As shown in Fig. 1, a random walk is performed
from a selected start node (e.g., node-t) in the graph in order
to collect neighboring nodes information. Assuming that a
transition has been performed from node-t to node-u, Fig. 1
illustrates the probabilities of the next transition from node-u
to one of its adjacent nodes. The transition probabilities to
the adjacent nodes are determined as follows.

P(ci = x |ci−1 = u) =

αpq(t, x)wux

Z
if ((u, x) ∈ E)

0, if ((u, x) < E)
(1)

where ci represents the i-th node during a random walk.
(u, x) represents an edge between node-u and node-x, and
wux represents the weight of this edge. E represents all the
edges in the graph. Z is a normalizing constant. α is defined
using parameters p and q as follows.

αpq(t, x) =


1 / p if dtx = 0
1 if dtx = 1

1 / q, if dtx = 2
(2)

where dtx represents a distance between the previous node
(i.e., node-t) and the next node (i.e., node-x). That is, dtx
is set to 0 when transitioning back to node-t; dtx is set to 1
when transitioning to an adjacent node of node-t; otherwise
dtx is set to 2. Let RW be the result of a single random
walk. The training samples can be efficiently generated
by partitioning RW with a given context size (i.e., window
size). In Fig. 1, NS(u) is an example of the training samples.
NS(u) represents neighboring nodes of node-u obtained by
a random walk started from node-u based on a random walk
strategy S. These training samples are trained using the
skip-gram model [3] illustrated in Fig. 2 (a).

Fig. 1 An example of random walk in node2vec.

In the skip-gram model, the numbers of dimensions in
the input-layer and output-layer are the same as the number
of nodes in the graph. The number of hidden-layer dimen-
sions corresponds to the number of the graph embedding
dimensions to be trained. An input data to the skip-gram
model is a one-hot vector, where only the element corre-
sponding to node-u is set to 1, and all other elements are set
to 0. An output of the model is a vector, where each ele-
ment represents the probability that the corresponding node
appears as an adjacent node of node-u. From NS(u) we
can obtain four different teacher labels, each of which is a
one-hot vector, where one of the nodes x1, x2, x4, and x5
is set to 1 and all other nodes are set to 0. Since there are
four different teacher labels, the final loss value is calculated
by summing the four individual loss values, each computed
using the same weights but different one-hot teacher labels.

2.2 node2vec for Dynamic Network

Dealing with dynamic graphs is one of the important chal-
lenges in graph-based learning, and there are many ap-
proaches to learn graph embedding for dynamic graphs.
Continuous-Time Dynamic Network (CTDN) [4] addresses
dynamic graphs by incorporating temporal information to the
graph and imposing temporal constraints during node2vec
random walks. Specifically, CTDN prohibits a movement

Fig. 2 Original skip-gram model and proposed model.
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in the time-decreasing direction during the random walk,
thereby preserving a temporal consistency. In [5], graph
snapshots are used as temporal information and combined
with node2vec for a link prediction. Specifically, a link
prediction at time t utilizes the temporal information up to
time t − 1. In dynnode2vec [6], a graph embedding at time
t is trained using the graph embedding at time t − 1 as ini-
tial values. Although there are many prior works that learn
graph embedding on such dynamic graphs, most of them
rely on a skip-gram based model and a conventional batch
training with backpropagation algorithm. dynnode2vec also
learns graph embedding sequentially using this approach.
However, in general, a sequential training using the conven-
tional backpropagation algorithm can result in the loss of
previous learning results. This phenomenon is known as a
catastrophic forgetting, which reduces the accuracy. In this
paper, we address this issue by utilizing an online sequential
training algorithm for graph embedding on dynamic graphs.
The details are described in the next section.

2.3 Sequential Training Algorithm

OS-ELM (Online Sequential Extreme Learning Ma-
chine) [7] is an online sequential training algorithm for neu-
ral networks with a single hidden layer. Figure 3 illustrates
the network structure and its training algorithm. The input-
layer, hidden-layer, and output-layer dimensions are n, N ,
and m, respectively. In the OS-ELM algorithm, the input-
side weights α ∈ Rn×N are fixed at random values at the ini-
tialization time, and only the output-side weights β ∈ RN×m

are trainable and sequentially updated. Assuming that the
i-th input data is fed to the neural network, hidden-layer out-
puts Hi ∈ RN are generated. Then, new output-side weights
βi are calculated based on previous weights βi−1 and tempo-
rary values Pi ∈ RN×N , which are also calculated based on
previous values Pi−1 and Hi . As shown in the equations in
Fig. 3, the OS-ELM algorithm derives an optimal β that can
minimize a loss between final outputs yi ∈ Rm and teacher
labels ti ∈ Rm analytically, where yi = G(xiα + b)β. This
sequential training is simple and fast since the sequential

Fig. 3 OS-ELM algorithm.

training is done in a single epoch, which is different from
a conventional backpropagation based training. An FPGA-
based acceleration of OS-ELM is reported [8].

2.4 Graph Embedding for IoT Environments

Although the graph-based learning has been actively studied
in recent years, how to utilize graph embedding and graph
neural networks (GNNs) for IoT applications remains an
emerging research topic. For example, there are many prior
works that utilize graph structures in IoT environments such
as network anomaly detection, malware detection, smart
transportation, and smart grids [9], [10]. It has been re-
ported that using graph structures can achieve favorable re-
sults in these applications. On the other hand, real-world
applications typically require a low latency while training
requires large amounts of data; thus, acceleration methods
of the training have been studied so far. These accelera-
tion methods include algorithmic approaches and hardware-
based approaches, and they are classified in [11]. In this
paper, we utilize node2vec since several prior works that uti-
lize node2vec for IoT tasks have been reported. For example,
node2vec is used to detect malware in IoT environments [12]
and to predict usage patterns in IoT environments [13].

2.5 node2vec Accelerator

Hardware accelerations for graph learning methods have
been studied so far. In this section, we introduce those
related to node2vec. For example, an FPGA-based acceler-
ation for random walk in node2vec has been reported [14].
Additionally, an FPGA-based acceleration of word2vec [3]
that uses the skip-gram model similar to node2vec has been
reported [15]. Please note that in [14], the random walk
process is accelerated, while in this paper we accelerate the
training algorithm of node2vec. Although the training algo-
rithm of word2vec is accelerated using FPGA in [15], in this
paper we propose a new approach for sequential training of
node2vec on dynamic graphs by combining OS-ELM with
the skip-gram model. This enables an efficient on-device
training on FPGA devices.

3. Sequential Graph Embedding Accelerator

3.1 Sequentially-Trainable Skip-Gram Model

Figure 2 (b) illustrates the proposed OS-ELM based training
model for graph embedding, and Algorithm 1 describes the
training algorithm. Since both the skip-gram and OS-ELM
assume neural networks with a single hidden layer, the OS-
ELM algorithm can be theoretically applied to the skip-gram.
In the original OS-ELM, Hi in Algorithm 1 are calculated
using xi ∈ Rn; specifically, Hi = G(xiα + b). Since the
input vector xi is one-hot, Hi can be calculated as the row
vector corresponding to the center node which is extracted
from α assuming that b is zero.

In the skip-gram model, a desired graph embedding can
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be obtained from weights of the neural network. Specifically,
the following weights can be used for the graph embedding:
1) the input-side weights α, 2) the output-side weights β,
and 3) the average of α and β. Among them, the input-side
weights are typically used for graph embedding. However,
since the input-side weights of the original OS-ELM are
statically fixed at random values, we cannot directly use these
weights for the graph embedding in the proposed model.
Although the original skip-gram model uses the input-side
weights for the graph embedding, in the proposed model, we
utilize the trainable weights of OS-ELM (i.e., β) to build
the input-side weights as described in [16]. Please note that
although this technique is not suited for word2vec [16], it
can be applied to node2vec algorithm. Assume an activation
function of the first layer is a linear function without bias
vectors. When we utilize βT ∈ Rn×N as the input-side
weights†, the output probabilities are simply obtained by
O(xiβT β), where O is an activation function of the last
layer such as sigmoid function. In this case, since xi is a
one-hot vector where only a given center node is 1 and the
others are 0, the output probability of the center node tends
to be high. This is not suited for word2vec, because in the
case of word2vec, probabilities that the center word appears
as its neighboring words should be low; for example, when
“dog” is the center word, “dog” rarely appears as neighboring
words of the center word. In the case of node2vec, on the
other hand, because of the nature of random walks described
in Sect. 2.1, the same node often appears as its neighboring
nodes.

In Fig. 2 (b), µ is a scale factor to transform β into
the input-side weights. In this case, the input-side weights
become a constant multiple of β; thus, the hidden-layer
outputs Hi also become a constant multiple of the column
vector corresponding to the center node which is extracted
from β. This eliminates the original random weights α from
OS-ELM, so we can reduce the model size and memory

†In the skip-gram model we can assume n = m.

Fig. 4 Overview of our proposal.

utilization.
The proposed model adopts the negative sampling

method [17]. In this case, only a fraction of samples from
negative nodes of teacher labels (i.e., nodes with a value of
0 in the one-hot vector) is trained instead of training all the
negative samples. This can significantly reduce the training
time by limiting the number of nodes to update, even if the
number of nodes in the graph is huge. In general, 5 to 20
negative samples are sufficient for small datasets, while 2
to 5 negative samples are enough for large datasets [17]. In
Algorithm 1, the innermost loop starting from line 9 corre-
sponds to the negative sampling. In this loop, ns denotes the
number of negative samples to be trained. The outermost
loop starting from line 1 processes RW obtained from a ran-
dom walk of node2vec. In the training phase, as described
in Sect. 2.1, RW is partitioned into samples (e.g., NS(u)) by
a given window size. In the case of NS(u), for example,
node-u is the center node, and nodes included in NS(u) are
trained as positive nodes. Only a fraction of negative nodes
is sampled randomly by the negative sampling method. The
sampled frequency as negative nodes depends on the number
of appearances of each node in the entire RW . This sam-
pling is done by the Walker’s alias [18], which is a weighted
sampling method. In this case, although the time complexity
to build a table used in the sampling is proportional to the
number of nodes, the time complexity of the sampling is
O(1). In Algorithm 1, lines 2 to 7 and lines 14 to 15 describe
the training algorithm of OS-ELM.

Figure 4 illustrates an overview of our proposal. The
training data are sampled by random walks on the “Graph”
in Fig. 4. “Table” represents the table for weighted sampling
used in Walker’s alias, which is used to sample negative
samples. These data are transferred to the programmable
logic part, and the weights necessary for training are read.
The updated weights are written back into DRAM to enable
the sequential training of the graph embedding.

3.2 FPGA Implementation

In this section, we describe an FPGA implementation (in-
cluding board and IP core levels) of the proposed model. We
use Xilinx Zynq MPSoC series as a target FPGA platform.
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Figure 5 illustrates a block diagram of the board-level imple-
mentation, which is divided into a processing system (PS)
part and a programmable logic (PL) part. Figure 6 illustrates
a block diagram of the implementation of the IP core. Our
sequentially-trainable node2vec accelerator is implemented
in the PL part of the FPGA, which is denoted as “Core”
in Fig. 5. This implementation of Core has two AXI inter-
faces. One interface is an AXI4-Lite with a 32-bit data bus
connected to the High-Performance Master (HPM0) port,
which allows the PS part to access control registers. The
other interface is an AXI4 with a 128-bit data bus connected
to the High-Performance Coherent (HPC0) port. In Fig. 6,
Parameter Buffer manages the model parameters such as β
and Input Buffer manages the training data, i.e., RW , which
is the result of a random walk, and ns, which is the result
of negative sampling. All these parameters are implemented
using BRAMs.

As graphs become larger and the dimensions of graph
embedding to be learned increase, it becomes challenging
to implement all the weights on resource-limited FPGA de-
vices. In the proposed model, since only a fraction of weights
is updated by each training data by the negative sampling
method, only weights necessary for training are implemented
on BRAM cells of the PL part.

The training is executed as follows. First, nodes are
sampled from a graph using random walk by a host CPU
in the PS part. The result of a single random walk and
negative samples necessary for the training are pre-sampled
by the CPU. Then, the following five steps are executed (the

Fig. 5 Block diagram of board-level implementation.

Fig. 6 Block diagram of IP core (numbers in this figure indicate steps for
graph embedding).

steps correspond to the numbers in Fig. 6). (1) The mode of
operation (e.g., read training data, learn graph embedding,
etc.) is set by the control registers and the IP core is started
from the CPU. (2) These training samples are transferred
from a DRAM to the Input Buffer. (3) After transferring the
training data and negative samples, weights necessary for
the training (e.g., β) are transferred from the DRAM to the
Parameter Buffer. (4) Then the model is sequentially trained
in the PL part so that the weights are updated using these data.
The result (a flag if the training is successful or not) is written
to the control register. (5) Finally, the trained weights are
written back to the DRAM. By repeating this procedure, the
graph embedding can be trained. In our implementation, the
same negative samples are used for multiple sets of training
data as described in [19] to reduce the data transfer size
between DRAM and BRAM; in this case, training samples
obtained by a single random walk are trained using the same
negative samples.

To further speedup, a dataflow optimization is applied
by modifying the update procedure of β in Algorithm 1. Al-
gorithm 2 shows the modified procedure. In Algorithm 1, Pi

and βi are updated sequentially in each iteration of the outer-
most loop starting from line 1. Since there is a dependency
between two successive iterations, a dataflow optimization
cannot be applied in our original algorithm. In Algorithm 2,
on the other hand, P and β are updated outside the out-
ermost loop (lines 19 and 20), and only their accumulated
differences (i.e., ∆P and ∆β) are updated sequentially inside
the loop. This modification enables the dataflow optimiza-
tion. Please note that the proposed model is trained with the
same output-side weights β and the same intermediate data
P for the result of a single random walk. It is expected that
the proposed model can maintain an accuracy if the num-
ber of training data is sufficient, which will be evaluated in



1164
IEICE TRANS. INF. & SYST., VOL.E108–D, NO.10 OCTOBER 2025

Table 1 Evaluation environments (desktop CPU, embedded GPU, and FPGA).

Fig. 7 CPU and FPGA implementations.

Sect. 4.
In our experiments, the CPU implementation is based

on Algorithm 1 and the FPGA implementation is based on
Algorithm 2. In addition to the dataflow optimization, loop
unrolling and loop pipelining directives are used in each stage
in Algorithm 2. This parallelism and dataflow optimization
are key factors to accelerate the training in our FPGA im-
plementation. Figure 7 (a) shows the training procedure of
the CPU implementation. In the CPU implementation, each
piece of training data is used for the training one by one based
on Algorithm 1. As an example, the calculation of Pi−1H

T
i

in Algorithm 1 is illustrated in this figure. This computation
is executed in a double loop over the number of hidden-layer
dimensions and is computed in order in the CPU imple-
mentation. Figure 7 (b) shows the training procedure of our
FPGA implementation. In our FPGA implementation, mul-
tiple training data are temporally overlapped and executed
simultaneously by the dataflow optimization. Furthermore,
the calculation of Pi−1H

T
i is also executed simultaneously by

employing the loop unrolling and loop pipelining directives.

4. Evaluations

The proposed accelerator is implemented with Xilinx
Vivado v2022.1 and Xilinx Vitis HLS v2022.1. We
choose Xilinx Zynq UltraScale+ MPSoC series as a tar-
get FPGA platform; specifically, ZCU104 evaluation board

Table 2 Three datasets used in evaluations.

(XCZU7EV-2FFVC1156) is used in this paper. In the per-
formance evaluation, our FPGA implementation is com-
pared with an embedded CPU of the FPGA board (ARM
Cortex-A53@1.2 GHz), a desktop computer (Intel Core i7-
11700@2.5 GHz), and an embedded GPU (Nvidia Jetson
Xavier NX). Their specifications and environments are sum-
marized in Table 1. The clock frequency of the PL part of
the FPGA board is set to 200 MHz. As for software coun-
terparts running on CPU, we use C/C++ to implement the
models and compile them with gcc 9.4.0. For the GPU
implementation, we use PyTorch 2.0.0+nv23.05 and CUDA
v11.4. Matrix multiplications such as Pi−1H

T
i are com-

puted by many processing cores. We use Pybind11 [20] for
the GPU implementation to accelerate the random walk up
to the same level as the other implementations.

4.1 Datasets

Table 2 lists three datasets used in our evaluations. We
use Cora [21], Amazon Photo [22], and Amazon Electronics
Computers [22]. Cora is a paper citation network in a ma-
chine learning research field. Each node represents a paper,
and each edge represents a citation relationship. Amazon
Photo and Amazon Electronics Computers are subsets of
Amazon co-purchase graph dataset [23]. Each node rep-
resents a product, and each edge represents that the two
products are frequently bought together.

4.2 Execution Time

Here, we evaluate the execution time of the proposed accel-
erator. The execution time is an elapsed time to train RW ,
which is obtained by a single random walk as mentioned in
Sect. 3. In our evaluation, the length of random walk l and
the window size w are set to 80 and 8, respectively. Thus,
the training time of a single random walk is measured over
73 iterations of the outermost loop starting from line 1 in
Algorithm 2. Please note that the execution time includes
the time required for the negative sampling but excludes the
time for random walks, which are not the target of accelera-
tion in this paper. Table 3 summarizes the hyper-parameters
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Table 3 Hyper-parameters of node2vec.

Table 4 Training time of a single random walk (vs. Cortex-A53 CPU).

of node2vec in this evaluation.
Table 4 shows the execution times of the proposed ac-

celerator and software implementations on ARM Cortex-
A53 CPU and Nvidia Jetson Xavier NX. As shown, 1.89
to 2.77 times speedup is achieved by replacing the original
skip-gram model with our OS-ELM based sequential model
(Algorithm 1). By implementing the proposed model on
the FPGA, the proposed accelerator achieves 24.14 to 73.72
times speedup compared to that on ARM Cortex-A53 CPU.
Compared to the CPU implementation of the original skip-
gram model, our accelerator achieves 45.50 to 205.25 times
speedup. On the other hand, GPU-based implementation
only achieves 0.31 to 1.11 times speedup compared to that
on ARM Cortex-A53 CPU. This is because the GPU-based
implementation suffers from latency overheads due to the
communication cost between a GPU and a CPU in addi-
tion to software overheads, especially when the number of
graph embedding dimensions is small. In fact, when the
number of dimension is 256, the GPU-based implementa-
tion achieves 7.23 times speedup compared to ARM Cortex-
A53 CPU since the proportion of the model’s computational
load in the overall processing increases. In the CPU imple-
mentation, the training time increases almost linearly as the
number of graph embedding dimensions increases since the
computation is done serially. In the GPU implementation,
the training time is nearly constant since the GPU imple-
mentation can sufficiently parallelize the computation even
when the number of embedding dimensions is 96. In the
FPGA implementation, although the training time is quite
small compared to the other two implementations, it in-
creases gradually as the number of embedding dimensions
increases since the computation was not fully parallelized
due to the resource limitations. In addition, Table 5 shows
the execution times of the proposed accelerator and soft-
ware implementations on Intel Core i7 11700 CPU. Even
when compared to the desktop computer, our small FPGA
implementation achieves 1.01 to 3.34 times speedup.

Table 6 shows the execution time breakdown in our
FPGA implementation. In this evalutaion, the number of

Table 5 Training time of a single random walk (vs. Core i7 11700 CPU).

Table 6 Execution time breakdown on FPGA (µs).

Table 7 The number of cycles for each stage in Algorithm 2 using Vitis
HLS v2022.1.

graph embedding dimensions is 32. The unit is microseconds
in this table. From this table, the total execution time of the
PL part required to train RW is 355 microseconds. This is
approximately the same as the execution time required for
tasks such as a single random walk or a negative samples
generation in the PS part. In the PL part, the training task
begins with reading training data and weights. The most
computationally expensive task is the training of the graph
embedding, which is described in Algorithm 2. Since each
stage is simultaneously executed in a pipeline by the dataflow
operation, we do not evaluate the execution time of each
stage from the start to the end of the training for RW . As an
alternative, Table 7 shows the number of cycles required for
each stage, calculated using Vitis HLS v2022.1. From this
table, stages 3 and 4 are relatively computationally expensive.
This is because stage 3 involves an increased number of loops
due to the negative sampling, and stage 4 requires a single
division operation.

4.3 Accuracy

For the accuracy evaluation, our trained graph embedding
should be tested with a machine learning task. Thus, in this
evaluation, it is used for a one-vs-rest logistic regression.
The F1 score by the logistic regression is used as an eval-
uation metric. The F1 score by the logistic regression is
used as an evaluation metric of classification models as in
[1]. It is denoted as the harmonic mean of the precision and
recall. For multi-class classification tasks, micro F1 score
is computed based on prediction results for all the classes.
When the number of samples is biased depending on their
classes, it is affected by majority classes. On the other hand,
macro F1 score is computed by averaging F1 scores each of
which is computed for each class. There are 4.54×, 5.86×,
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and 17.72× differences between the largest and smallest class
samples in Cora, Amazon Photo, and Amazon Electronics
Computers datasets. In this paper, we thus show both the
micro and macro F1 score results. For the logistic regres-
sion, 90% of the data are used as training data, and 10% are
used as test data for multiclass classification. SGD (Stochas-
tic Gradient Descent) is used to train the original skip-gram
model, and the learning rate is set to 0.01. In this evaluation,
a graph embedding is trained three times. Then, an average
F1 score over the three trials is reported as the evaluation
result.

4.3.1 Impact of Dataflow Optimization

To evaluate the impact of dataflow optimization applied to
our FPGA accelerator, the proposed algorithm (Algorithm 1)
on CPU and the modified algorithm (Algorithm 2) on FPGA
are compared in terms of the accuracy. The three datasets
described in Sect. 4.1 are used for this evaluation. Figure 8
shows the evaluation results, where “ampt” and “amcp” rep-
resent Amazon Photo and Amazon Electronics Computers
datasets, respectively. Both micro and macro F1 scores are
reported. While the accuracy of the FPGA implementation
decreases by up to 1.09% in Cora dataset, no accuracy degra-
dation is observed in the other two datasets, which have a
relatively large number of nodes. In our FPGA implemen-
tation, the number of weight updates is decreased due to the
dataflow optimization, and this affects the accuracy of Cora,
which is a relatively small graph.

Fig. 8 Impact of dataflow optimization on accuracy.

4.3.2 Impact of Sequential Training

Next, we evaluate the benefit of the sequential training, which
is one of major contributions of this paper. Figure 9 shows
the evaluation results, where “Original” represents the orig-
inal skip-gram model and “Proposed” represents our pro-
posed model (i.e., Algorithm 2). In addition, we examine
two training scenarios: “all” and “seq”. In the “all” case, an
entire graph is trained assuming that all the edges exist from
the beginning. In the “seq” case, only a fraction of edges is
trained first; then, new edges are sequentially added to the
graph, and a sequential training is executed every time a new
edge is added. To build the initial graph of the “seq” case, we
remove edges from an entire graph so that the initial graph
becomes a forest without changing the number of connected
components to the original entire graph. Subsequently, ev-
ery time the removed edge is added, the random walk and
training of node2vec are executed. In this case, the random
walk starts from both the ends of an added edge.

As shown in Fig. 9, in the “all” case, the original skip-
gram model achieves a higher accuracy compared with the
proposed model for all the numbers of graph embedding
dimensions (i.e., the numbers of hidden-layer nodes in the
model) in all the datasets. In the “seq” case, on the other
hand, the accuracy of our OS-ELM based sequentially-
trainable model tends to be high compared to the original
skip-gram model. In contrast, the accuracy of the origi-
nal model drops when sequentially training the edges in the
“seq” case. This implies that the sequential training using
the backpropagation algorithm for the original model causes
a catastrophic forgetting. This impact tends to be larger
when the number of graph embedding dimensions increases
and the graph becomes large. Although in this evaluation
only a fraction of weights is updated by the negative sam-
pling, the accuracy of the original model decreases due to the
catastrophic forgetting. Please note that the proposed model
in the “seq” case achieves a higher accuracy compared to
the “all” case. Because in the “seq” case, a random walk
and sequential training are executed every time a new edge
is added, the number of training samples increases in the
“seq” case; thus, the proposed sequential model successfully
increases the accuracy. These results demonstrate that the
graph embedding can be sequentially trained by using the
proposed sequential model even if target graphs are large
and dynamically updated. Overall, the macro F1 scores are
approximately 1% lower than the micro F1 scores, which
means that there are differences in classification accuracies
depending on the classes. Specifically, the accuracy of small
class samples tends to be low compared to those of large
class samples.

4.3.3 Impact of Scale Factor µ

As proposed in Sect. 3.1, in our sequential model, the input-
side weights are replaced with a constant multiple of β.
Figure 10 shows the accuracy of the proposed model when
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Fig. 9 Impact of sequential training on accuracy.

Fig. 10 Impact on scale factor µ on accuracy.

the scale factor µ in Algorithm 2 is varied. Y-axis shows the
accuracy, while X-axis shows the scale factor. The number
of graph embedding dimensions is 32. In this graph, “alpha”
represents an accuracy of a special case, where the input-
side weights are fixed with random values as in the original
OS-ELM algorithm. The accuracy of this “alpha” case is
lower than our proposed model except when the scale factor
µ is very small (i.e., 0.001). Actually, the accuracy of the
proposed model when µ is 0.001 is quite low, indicating
that a meaningful graph embedding may not be learned. On
the other hand, we can see that the proposed model when
µ ≥ 0.005 can learn a useful graph embedding. Especially,
the accuracy is quite high when µ is ranging from 0.005 to
0.1, while it is gradually decreased when µ > 0.1.

4.3.4 Impact of Update Frequency of Sampling Table

In our proposed model, a table for the negative sampling is
updated during the sequential training. Here, we evaluate

Fig. 11 Impact of update frequency of sampling table on accuracy.

the impact of the update frequency of the sampling table
in terms of the accuracy. For the negative sampling, as
mentioned in Sect. 3.1, the sampling frequency depends on
the number of appearances of each node in a given training
dataset. Since the Walker’s alias is used for the sampling,
the time complexity to update the table is proportional to the
number of graph nodes. Figure 11 shows the accuracy of the
proposed model when the update frequency of the sampling
table is varied. Y-axis shows the accuracy, while X-axis
shows the number of added edges for each table update (i.e.,
update frequency of the table). In this graph, “no_change”
represents an accuracy of a special case, where the table is
not updated once the table is created. The accuracy when the
table is updated every 100 edges added is almost the same
as that when the table is updated every single edge added.
On the other hand, the accuracy is dropped when the table is
updated every 10,000 edges added, and that of “no_update”
is also low. These negative impacts tend to be large in larger
graphs.
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Table 8 Model sizes of original model and proposed model (MB).

Table 9 Resource utilizations on XCZU7EV.

4.4 Model Size

Here, we compare the original skip-gram model and our
proposed sequential model for the FPGA in terms of the
model size. Table 8 shows their model sizes. The results
show that the proposed model is up to 3.82 times smaller
than the original model, thanks to our simplified OS-ELM
based model, where the output-side weights β are reused for
the input-side weights (thus we do not have to retain α). This
reduces the memory consumption compared to the original
skip-gram model; thus, our proposed model is beneficial for
resource-limited IoT devices.

4.5 FPGA Resource Utilization

Here, we evaluate the FPGA resource utilization of the pro-
posed model. We use Zynq UltraScale+ XCZU7EV as a
target FPGA device which has 11 Mb BRAM and 1,728
DSP slices. Table 9 shows the resource utilizations when
the numbers of graph embedding dimensions are 32, 64, and
96, respectively. In our FPGA implementation, the compu-
tational parallelism is basically set to 32. However, when
the number of graph embedding dimensions is 64 and 96,
the parallelism is partially set to 48 and 64 so that execu-
tion times of pipeline stages are equalized for the dataflow
optimization. As shown in the table, when the number of
graph embedding dimensions is 32, 79.80% of DSP slices
are consumed because fixed-point multiply-add operations
are parallelized. When the number of graph embedding di-
mensions is 64, since the number of BRAM partitions is
increased for further speedup, the BRAM and DSP utiliza-
tions are 86.86% and 89.81%, respectively.

4.6 Power Efficiency

Finally, we compare the power efficiency of our FPGA imple-
mentation with that of the CPU and GPU implementations to

Table 10 Comparison of power consumption (W).

demonstrate the benefit of the FPGA implementation, which
is also a key contribution of this paper. We measured the
power consumption of the ZCU104 board using a current
sensor, INA226. jetson-stats [24] and s-tui [25] are used to
measure the power of Nvidia Jetson Xavier NX and Intel
Core i7-11700, respectively. We measured the power con-
sumption over one minute and averaged the measured values.
In the cases of ZCU104 and Jetson Xavier NX, we subtracted
the average power consumption in the idle state to obtain only
the power consumption of our program. Table 10 shows the
results.

In each graph embedding dimension, the FPGA im-
plementation consumes 110.38, 65.00, and 43.03 times less
power than Intel Core i7-11700 CPU. It also achieves 3.09,
1.83, and 1.34 times less power consumption than that of
Nvidia Jetson Xavie NX. Combined with the results from
Tables 4 and 5, our FPGA implementation offers 111.81,
105.56, and 104.65 times power efficiency than Intel Core
i7-11700 CPU in each graph embedding dimension. It also
reaches 239.12, 135.76, and 88.87 times power efficiency
than Nvidia Jetson Xavier NX. The FPGA implementation
achieves 16.36 to 27.88 (32.91 to 78.12) times power effi-
ciency when compared with the implementation of Proposed
(Original) model on ARM Cortex-A53 CPU.

5. Conclusion

To improve the performance and power efficiency of the
graph embedding, in this paper, we proposed an OS-ELM
based sequentially-trainable model for graph embedding and
implemented it on an FPGA device. Compared to the orig-
inal skip-gram model, the proposed model achieved 1.89 to
2.77 times speedup. Furthermore, the FPGA implementa-
tion achieved 45.50 to 205.25 times speedup compared to
the original model on ARM Cortex-A53 CPU. We also
compared our proposed FPGA implementation with an em-
bedded GPU implementation and achieved 88.87 to 239.12
times power efficiency than the Nvidia Jetson Xavier NX. In
the proposed model, by replacing the input-side weights with
trained output-side weights (i.e., β), we achieved both the
accuracy improvement and the memory size reduction. For
the sequential training of dynamic graphs, we showed that
although the original model decreases the accuracy, the pro-
posed model can be trained without decreasing the accuracy.
We also analyzed the impacts of the scale factor µ and the
update frequency of sampling table of the proposed model on
accuracy. As a result, we demonstrate that the FPGA imple-
mentation improves the performance and power efficiency
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compared to the CPU and embedded GPU implementations.
In our future work, our FPGA-based sequentially-trainable
model will be combined with an FPGA-based random walk
acceleration.
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