
An FPGA-Based Accelerator for Graph Embedding
using Sequential Training Algorithm

Kazuki Sunaga∗, Keisuke Sugiura∗, Hiroki Matsutani∗
∗Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522

Email: {sunaga,sugiura,matutani}@arc.ics.keio.ac.jp

Abstract—A graph embedding is an emerging approach that
can represent a graph structure with a fixed-length low-
dimensional vector. node2vec is a well-known algorithm to obtain
such a graph embedding by sampling neighboring nodes on a
given graph with a random walk technique. However, the original
node2vec algorithm typically relies on a batch training of graph
structures; thus, it is not suited for applications in which the
graph structure changes after the deployment. In this paper,
we focus on node2vec applications for IoT (Internet of Things)
environments. To handle the changes of graph structures after
the IoT devices have been deployed in edge environments, in
this paper we propose to combine an online sequential training
algorithm with node2vec. The proposed sequentially-trainable
model is implemented on an FPGA (Field-Programmable Gate
Array) device to demonstrate the benefits of our approach. The
proposed FPGA implementation achieves up to 205.25 times
speedup compared to the original model on ARM Cortex-
A53 CPU. Evaluation results using dynamic graphs show that
although the accuracy is decreased in the original model, the
proposed sequential model can obtain better graph embedding
that achieves a higher accuracy even when the graph structure
is changed.

I. INTRODUCTION

Graph structures in which nodes are connected by edges
can be seen everywhere in our life. For example, friendships
of users in social networking services, relationships between
users and purchased items in e-commerce sites, and paper cita-
tion relationships can be represented by such graph structures.
Thus, there are high demands for applications that can extract,
analyze, and utilize information from these graph structures.
Although a graph structure can be represented by an adjacency
matrix, the adjacency matrix cannot be directly used in sta-
tistical or machine learning based methods especially when
the graph structure becomes large and sparse. To overcome
this issue, a graph embedding is an emerging representation
which can be directly used with statistical or machine learning
methods.

Using the graph embedding, graph structures can be
represented with fixed-length low-dimensional vectors.
node2vec [1] is a well-known algorithm to obtain the graph
embedding by sampling neighboring node information on
a given graph with a random walk technique. However,
the original node2vec algorithm typically relies on a batch
training, not online sequential training; thus, it is not
suited for applications where the graph structure changes
after the deployment. In this paper, we assume node2vec
applications for IoT environments. To handle the changes

Fig. 1: An example of random walk in node2vec

of graph structures after the IoT devices are deployed in
edge environments, in this paper we propose to combine an
online sequential training algorithm with node2vec. Since the
low-cost and low-power execution is required for such IoT
applications, the proposed sequential model is implemented
on an FPGA device in order to significantly shorten the
training time at the deployed environment.

The rest of this paper is organized as follows. Sec-
tion II introduces related works, and Section III proposes a
sequentially-trainable graph embedding model and its FPGA-
based accelerator. Section IV evaluates the model and the
accelerator in terms of the execution time, accuracy, model
size, and FPGA resource utilization. Section V summarizes
our contributions.

II. RELATED WORK

A. node2vec Algorithm

node2vec [1] is a well-known algorithm to obtain a graph
embedding. As shown in Figure 1, a random walk is performed
from a selected start node (e.g., node-t) in the graph in order
to collect neighboring nodes information. Assuming that a
transition has been performed from node-t to node-u, Figure 1
illustrates the next transition probabilities from node-u to
one of its adjacent nodes. The transition probabilities to the
adjacent nodes are determined as follows.

P (ci = x|ci−1 = u) =


αpq(t, x)wux

Z
if ((u, x) ∈ E)

0, if ((u, x) /∈ E)
(1)

where ci represents the i-th node during a random walk. (u, x)
represents an edge between node-u and node-x, and wux

represents the weight of this edge. E represents all the edges
in a graph. Z is a normalizing constant. α is defined using
parameters p and q as follows. αpq(t, x) = 1/p if dtx = 0,
αpq(t, x) = 1 if dtx = 1, and αpq(t, x) = 1/q if dtx = 2,
where dtx represents a distance between the previous node
(i.e., node-t) and the next node (i.e., node-x). That is, dtx is
set to 0 when transitioning back to node-t; dtx is set to 1
when transitioning to an adjacent node of node-t; otherwise
dtx is set to 2. Let RW be the result of a single random
walk. The training samples can be efficiently generated by
partitioning RW with a given context size (i.e., window size).
In Figure 1, NS(u) is an example of the training samples.
NS(u) represents neighboring nodes of node-u obtained by
a random walk started from node-u based on a random walk
strategy S. These training samples are trained with the skip-
gram model [2] illustrated in Figure 2 (left).

In the skip-gram model, the numbers of input-layer and
output-layer dimensions are the same as the number of nodes
in the graph. The number of hidden-layer dimensions is corre-
sponding to the number of the graph embedding dimensions to
be trained. An input data to the skip-gram model is a one-hot
vector, where only node-u is 1 and the other nodes are 0. An
output of the model is a vector, where each node represents a
probability that this node appears as an adjacent node of node-
u. From NS(u) we can obtain four different teacher labels,
each of which is a one-hot vector, where one of nodes x1,
x2, x5, and x7 is 1 and the other nodes are 0. Since there are
four different teacher labels, the final loss value is calculated
by summing up the four loss values computed using the same
weights but different one-hot teacher labels.

B. node2vec for Dynamic Network

Dealing with dynamic graphs is one of important challenges
in graph-based learning, and there are many approaches to
learn graph embedding for dynamic graphs. Continuous-Time
Dynamic Network (CTDN) [3] addresses dynamic graphs
by adding temporal information to the graph and imposing
temporal constraints during node2vec random walks. Specif-
ically, CTDN prohibits a movement in the time decreasing
direction during the random walk, thus preserving a temporal
consistency. In [4], graph snapshots are used as temporal
information and combined with node2vec for link prediction.
Specifically, a link prediction at time t utilizes the temporal
information until time t − 1. In dynnode2vec [5], graph
embedding at time t is trained by using graph embedding
at time t − 1 as initial values. Although there are many
prior works that learn graph embedding on such dynamic
graphs, most of them rely on a skip-gram based model and
a conventional batch training with backpropagation algorithm.
dynnode2vec also sequentially learns graph embedding with
this approach. However, in general a sequential training using
the conventional backpropagation algorithm results in the loss
of previous learning results. Such a phenomenon is known as a
catastrophic forgetting, which reduces accuracy. In this paper,
on the other hand, we utilize an online sequential training

Fig. 2: Original skip-gram model (left) and proposed model (right)

Fig. 3: OS-ELM algorithm

algorithm for graph embedding on dynamic graphs. The details
are described in the next section.

C. Sequential Training Algorithm

OS-ELM (Online Sequential Extreme Learning Ma-
chine) [6] is an online sequential training algorithm for neural
networks with a single hidden layer. Figure 3 illustrates the
network structure and its training algorithm. The input-layer,
hidden-layer, and output-layer dimensions are n, N , and m,
respectively. In the OS-ELM algorithm, the input-side weights
α ∈ Rn×N are fixed at random values at the initialization
time, and only the output-side weights β ∈ RN×m are
trainable and sequentially updated. Assuming that the i-th
input data is fed to the neural network, hidden-layer outputs
Hi ∈ RN are generated. Then, new output-side weights βi

are calculated based on previous weights βi−1 and temporary
values Pi ∈ RN×N , which are also calculated based on
previous values Pi−1 and Hi. As shown in the equations
in the figure, the OS-ELM algorithm derives an optimal β
that can minimize a loss between final outputs yi ∈ Rm and
teacher labels ti ∈ Rm analytically, where yi = G(xiα+b)β.
This sequential training is simple and fast since the sequential
training is done in a single epoch, which is different from a
conventional backpropagation based training. An FPGA-based
acceleration of OS-ELM is reported [7].

D. Graph Embedding for IoT Environments

Although graph-based learning has been actively studied in
recent years, how to utilize graph embedding and graph neural

networks (GNNs) for IoT applications is still an emerging
research topic. For example, there are many prior works that
utilize graph structures in IoT environments such as network
anomaly detection, malware detection, smart transportation,
and smart grids [8] [9]. It is reported that using graph
structures can achieve favorable results in these tasks. On
the other hand, since real-world applications typically require
low latency while training large amounts of data, acceleration
methods of the training have been studied so far. These
training acceleration methods include algorithmic approaches
and hardware based approaches, and they are classified in [10].
In this paper, we utilize node2vec, and some prior works
that utilize node2vec for IoT tasks have been reported. For
example, node2vec is used to detect malware in IoT environ-
ments [11]. It is also used to predict usage patterns in IoT
environments [12].

E. node2vec Accelerator

Hardware accelerations of graph learning methods have
been studied so far. In this section, we introduce those related
to node2vec. For example, an FPGA-based acceleration of
random walk for node2vec is reported [13]. An FPGA-based
acceleration of word2vec [2] that uses the skip-gram model as
well as node2vec is reported [14]. Please note that the random
walk is accelerated in [13] while in this paper we accelerate
the training algorithm of node2vec. Although the training
algorithm of word2vec is accelerated by FPGA in [14], in this
paper we newly propose a sequential training of node2vec
for dynamic graphs by combining OS-ELM and the skip-
gram model so that the on-device training can be efficiently
implemented on FPGA devices.

III. SEQUENTIAL GRAPH EMBEDDING ACCELERATOR

A. Sequentially-Trainable Skip-Gram Model

Figure 2 (right) illustrates the proposed OS-ELM based
training model for graph embedding, and Algorithm 1 de-
scribes the training algorithm. Since both the skip-gram and
OS-ELM assume neural networks with a single hidden layer,
the OS-ELM algorithm can be theoretically applied to the
skip-gram. In the original OS-ELM, Hi in Algorithm 1 are
calculated using xi ∈ Rn; specifically, Hi = G(xiα + b).
Since the input vector xi is one-hot, Hi can be calculated
as the row vector corresponding to the center node which is
extracted from α assuming that b is zero.

In the skip-gram model, the desired graph embedding is
obtained from weights of the neural network. Specifically,
we may be able to use the following weights for the graph
embedding: 1) the input-side weights α, 2) the output-side
weights β, and 3) the average of α and β. Among them, the
input-side weights are typically used for graph embedding.
However, since the input-side weights of the original OS-ELM
are statically fixed at random values, in the proposed model
we cannot directly use the input-side weights for the graph
embedding. Although the original skip-gram model uses the
input-side weights for the graph embedding, in the proposed
model we utilize the trainable weights of OS-ELM (i.e., β)

Algorithm 1 Proposed algorithm

1: for each context do
2: Hi ← β[center node]× µ
3: Compute Pi−1H

T
i and HiPi−1

4: Compute Pi−1H
T
i HiPi−1 and HiPi−1H

T
i

5: hpht inv ← 1
HiPi−1H

T
i

6: Pi ← Pi−1 − Pi−1H
T
i HiPi−1 × hpht inv

7: Compute PiH
T
i

8: for each window do
9: for itr = 1 to ns+ 1 do

10: if itr = 1 then
11: sample← positive sample
12: else
13: sample← negative sample
14: Compute ti −Hiβi−1[sample]

15: βi ← βi−1 + PiH
T
i (yi −Hiβi−1)

to build the input-side weights as in [15]. Please note that
although this technique is not suited for word2vec [15], it
can be applied for node2vec algorithm. Assume an activation
function of the first layer is a linear function without bias
vector. When we utilize βT ∈ Rn×N as the input-side weights
1, the output probabilities are simply obtained by O(xiβ

Tβ),
where O is an activation function of the last layer such as
sigmoid function. In this case, since xi is one-hot vector
where only a given center node is 1 and the others are 0, the
output probability of the center node tends to be high. This
is not suited for word2vec, because in the case of word2vec,
probabilities that the center word appears as its neighboring
words should be low; for example, when “dog” is a center
word, “dog” rarely appears as neighboring words of the center
word. In the case of node2vec, on the other hand, because of
the nature of random walks described in Section II-A, the same
node often appears as its neighboring nodes.

In Figure 2 (right), µ is a scale factor to transform β into
the input-side weights. In this case, the input-side weights
become a constant multiple of β; thus the hidden-layer outputs
Hi also become a constant multiple of the column vector
corresponding to the center node which is extracted from β.
This eliminates the original random weights α from OS-ELM,
so we can reduce the model size and memory utilization.

The proposed model adopts the negative sampling [16]. In
this case, only a fraction of samples from negative nodes of
teacher labels (i.e., nodes with a value of 0 in the one-hot
vector) is trained instead of training all the negative samples.
This can significantly reduce the training time by limiting the
number of nodes to update, even if the number of nodes in
the graph is huge. In general, 5 to 20 negative samples are
sufficient for small datasets, while 2 to 5 negative samples are
enough for large datasets [16]. In Algorithm 1, the innermost
loop starting from line 9 corresponds to the negative sampling.
In this loop, ns denotes the number of negative samples to be

1In the skip-gram model we can assume n = m.

Fig. 4: Board-level implementation

trained. The outermost loop starting from line 1 processes RW
obtained from a random walk of node2vec. In the training
phase, as described in Section II-A, RW is partitioned into
samples (e.g., NS(u)) by a given window size. In the case of
NS(u), for example, node-u is the center node, and nodes
included in NS(u) are trained as positive nodes. Only a
fraction of negative nodes is sampled randomly by the negative
sampling method. The sampled frequency as negative nodes
depends on the number of appearances of each node in the
entire RW . This sampling is done by the Walker’s alias [17],
which is a weighted sampling method. In this case, although
the time complexity to build a table used in the sampling is
proportional to the number of nodes, the time complexity of
the sampling is O(1). In Algorithm 1, lines 2 to 7 and lines
14 to 15 describe the training algorithm of OS-ELM.

B. FPGA Implementation

In this section, we describe an FPGA implementation of
the proposed model. We assume Xilinx Zynq MPSoC series
as a target FPGA platform. Figure 4 illustrates a block
diagram of the board-level implementation, which is divided
into a processing system (PS) part and a programmable logic
(PL) part. Our sequentially-trainable node2vec accelerator is
implemented in the PL part of the FPGA, which is denoted
as “Core” in Figure 4.

As graphs become larger and the dimensions of graph
embedding to be learned increase, it becomes challenging to
implement all the weights on resource-limited FPGA devices.
In the proposed model, since only a fraction of weights is
updated by each training data by the negative sampling, only
weights necessary for training are implemented on BRAM
cells of the PL part. The training process is as follows. First,
nodes are sampled from a graph using random walk by a host
CPU in the PS part. The obtained result of a single random
walk and negative samples necessary for training are pre-
sampled by the CPU. These samples are transferred from a
DRAM to the BRAM via a DMA controller. After transferring
the training data and negative samples, weights necessary
for training (e.g., β) are transferred from the DRAM to the
BRAM. Then the model is sequentially trained in the PL part
so that the weights are updated using these data. Finally, the
trained weights are written back to the DRAM via the DMA
controller. By repeating this procedure, a graph embedding can
be trained. In our implementation, the same negative samples

Algorithm 2 Modified algorithm for dataflow optimization

1: for each context do
2: Stage1 :
3: Hi ← β[center note]× µ
4: Compute Pi−1H

T
i and HiPi−1

5: Stage2 :
6: Compute Pi−1H

T
i HiPi−1 and HiPi−1H

T
i

7: Stage3 :

8: for each window do
9: for itr = 1 to ns+ 1 do

10: if itr = 1 then
11: sample← positive sample
12: else
13: sample← negative sample
14: Compute ti −Hiβi−1[sample]

15: Stage4 :
16: hpht inv ← 1

HiPi−1H
T
i

17: ∆P ←∆P − Pi−1H
T
i HiPi−1 × hpht inv

18: ∆β ←∆β + PiH
T
i (yi −Hiβi−1)

19: Pi ← Pi−1 +∆P
20: βi ← βi−1 +∆β

are used for multiple sets of training data as in [18] to reduce
the data transfer between DRAM and BRAM; in this case,
training samples obtained by a single random walk are trained
using the same negative samples.

To further speedup, a dataflow optimization is applied by
modifying the update procedure of β in Algorithm 1. Algo-
rithm 2 shows the modified procedure. In Algorithm 1, Pi and
βi are updated sequentially in each iteration of the outermost
loop starting from line 1. Since there is a dependency between
two successive iterations, a dataflow optimization cannot be
applied in our original algorithm. In Algorithm 2, on the
other hand, P and β are updated outside the outermost loop
(lines 19 and 20), and only their accumulated differences (i.e.,
∆P and ∆β) are updated sequentially inside the loop. This
modification enables the dataflow optimization. Please note
that the proposed model is trained with the same output-side
weights β and the same intermediate data P for the result of
a single random walk. It is expected that the proposed model
can maintain an accuracy if the number of training data is
sufficient, which will be evaluated in the next section.

IV. EVALUATIONS

The proposed accelerator is implemented with Xilinx Vi-
vado v2022.1 and Xilinx Vitis HLS v2022.1. We choose
Xilinx Zynq UltraScale+ MPSoC series as a target FPGA
platform; specifically, ZCU104 evaluation board (XCZU7EV-
2FFVC1156) is used in this paper. As for software counterparts
running on CPU, we use C/C++ to implement the models and
compile them with gcc 9.4.0. In the performance evaluation,
our FPGA implementation is compared with an embedded
CPU of the FPGA board (ARM Cortex-A53 @1.2GHz) and

TABLE I: Three datasets used in evaluations

Dataset # nodes # edges # classes
Cora 2,708 5,429 7

Amazon Photo 7,650 143,663 8
Amazon Electronics Computers 13,752 287,209 10

TABLE II: Hyper-parameters of node2vec

Parameter Value Description
p 0.5 Parameter to define αpq(t, x)
q 1.0 Parameter to define αpq(t, x)
r 10 Number of random walks per node
l 80 Length of single random walk
w 8 Window size
ns 10 Number of negative samples

a desktop computer (Intel Core i7-11700 @2.5GHz). Ubuntu
20.04.6 LTS in running on the computers. The clock frequency
of the PL part of the FPGA board is set to 200MHz.

A. Datasets

Table I lists three datasets used in our evaluations. We
use Cora [19], Amazon Photo [20], and Amazon Electronics
Computers [20]. Cora is a paper citation network in a machine
learning research field. Each node represents a paper, and each
edge represents a citation relationship. Amazon Photo and
Amazon Electronics Computers are subsets of Amazon co-
purchase graph dataset [21]. Each node represents a product,
and each edge represents that the two products are frequently
bought together.

B. Execution Time

Here, we evaluate the execution time of the proposed
accelerator. The execution time is an elapsed time to train
RW , which is obtained by a single random walk as mentioned
in Section III. In our evaluation, the length of random walk
l and the window size w are set to 80 and 8, respectively.
Thus, the training time of a single random walk is measured
over 73 iterations of the outermost loop starting from line
1 in Algorithm 2. Table II summarizes the hyper-parameters
of node2vec in this evaluation. Table III shows the execution
times of the proposed accelerator and software implementa-
tions on ARM Cortex-A53 CPU. As shown, 1.89 to 2.77 times
speedup is achieved by replacing the original skip-gram model
with our OS-ELM based sequential model (Algorithm 1).
By implementing the proposed model on the FPGA, the
proposed accelerator achieves 24.14 to 73.72 times speedup
compared to that on ARM Cortex-A53 CPU. Compared to
the CPU implementation of the original skip-gram model,
our accelerator achieves 45.50 to 205.25 times speedup. In
addition, Table IV shows the execution times of the proposed
accelerator and software implementations on Intel Core i7
11700 CPU. Even when compared to the desktop computer,
our small FPGA implementation achieves 1.01 to 3.34 times
speedup.

C. Accuracy

For the accuracy evaluation, our trained graph embedding
should be tested with a machine learning task. In this eval-
uation, it is used for a one-vs-rest logistic regression. The

TABLE III: Training time of a single random walk (vs. Cortex-A53
CPU)

graph embedding dimensions
32 64 96

Original model on CPU (ms) 35.357 100.291 202.175
Proposed model on CPU (ms) 18.753 35.941 72.612

Proposed model on FPGA (ms) 0.777 0.878 0.985
Speedup (vs. Original model on CPU) 45.504 114.227 205.254
Speedup (vs. Proposed model on CPU) 24.135 40.935 73.718

TABLE IV: Training time of a single random walk (vs. Core i7
11700 CPU)

graph embedding dimensions
32 64 96

Original model on CPU (ms) 1.309 2.293 3.285
Proposed model on CPU (ms) 0.787 1.426 2.396

Proposed model on FPGA (ms) 0.777 0.878 0.985
Speedup (vs. Original model on CPU) 1.687 2.612 3.335
Speedup (vs. Proposed model on CPU) 1.013 1.624 2.432

F1 score by the logistic regression is used as an evaluation
metric. For the logistic regression, 90% of the data are used
as training data, and 10% are used as test data for multiclass
classification. SGD (Stochastic Gradient Descent) is used to
train the original skip-gram model, and the learning rate is set
to 0.01. In this evaluation, a graph embedding is trained three
times. An average F1 score over the three trials is reported as
the evaluation result.

1) Impact of Dataflow Optimization: To evaluate the impact
of dataflow optimization applied to our FPGA accelerator, the
proposed algorithm (Algorithm 1) on CPU and the modified
algorithm (Algorithm 2) on FPGA are compared in terms of
the accuracy. The three datasets described in Section IV-A
are used for this evaluation. Figure 5 shows the evaluation
results, where “ampt” and “amcp” represent Amazon Photo
and Amazon Electronics Computers datasets, respectively.
While the accuracy of the FPGA implementation decreases
by up to 1.09% in Cora dataset, no accuracy degradation is
observed in the other two datasets, which have a relatively
large number of nodes. In our FPGA implementation, the
number of weight updates is decreased due to the dataflow
optimization, and this affects the accuracy of Cora, which is
a relatively small graph.

2) Impact of Sequential Training: Next, we evaluate the
benefit of the sequential training, which is one of major
contributions of this paper. Figure 6 shows the evaluation
results, where “Original” represents the original skip-gram
model and “Proposed” represents our proposed model (i.e.,
Algorithm 2). In addition, we examine two training scenarios:
“all” and “seq”. In the “all” case, an entire graph is trained
assuming that all the edges exist from the beginning. In the
“seq” case, only a fraction of edges is trained first; then, new
edges are sequentially added to the graph, and a sequential
training is executed every time a new edge is added. To build
the initial graph of the “seq” case, we remove edges from an
entire graph so that the initial graph becomes a forest without
changing the number of connected components to the original
entire graph. Subsequently, every time the removed edge is
added, the random walk and training of node2vec are executed.

Fig. 5: Impact of dataflow optimization on accuracy

In this case, the random walk starts from both the ends of an
added edge.

As shown in Figure 6, in the “all” case, the original skip-
gram model achieves a higher accuracy compared with the
proposed model for all the numbers of graph embedding
dimensions (i.e., the numbers of hidden-layer nodes in the
model) in all the datasets. In the “seq” case, on the other hand,
the accuracy of our OS-ELM based sequentially-trainable
model tends to be high compared to the original skip-gram
model. In contrast, the accuracy of the original model drops
when sequentially training the edges in the “seq” case. This
implies that the sequential training using the backpropagation
algorithm for the original model causes a catastrophic for-
getting. This impact tends to be larger when the number of
graph embedding dimensions increases and the graph becomes
large. Although in this evaluation only a fraction of weights is
updated by the negative sampling, the accuracy of the original
model decreases due to the catastrophic forgetting. Please note
that the proposed model in the “seq” case achieves a higher
accuracy compared to the “all” case. Because in the “seq”
case, a random walk and sequential training are executed every
time a new edge is added, the number of training samples in-
creases in the “seq” case; thus, the proposed sequential model
successfully increases the accuracy. These results demonstrate
that the graph embedding can be sequentially trained by using
the proposed sequential model even if target graphs are large
and dynamically updated.

3) Impact of Scale Factor µ: As proposed in Section III-A,
in our sequential model, the input-side weights are replaced
with a constant multiple of β. Figure 7 shows the accuracy of
the proposed model when the scale factor µ in Algorithm 2
is varied. Y-axis shows the accuracy, while X-axis shows the
scale factor. The number of graph embedding dimensions is
32. In this graph, “alpha” represents an accuracy of a special
case, where the input-side weights are fixed with random
values as in the original OS-ELM algorithm. The accuracy
of this “alpha” case is lower than our proposed model except
when the scale factor µ is very small (i.e., 0.001). Actually,
the accuracy of the proposed model when µ is 0.001 is quite
low, indicating that a meaningful graph embedding may not
be learned. On the other hand, we can see that the proposed
model when µ ≥ 0.005 can learn a useful graph embedding.
Especially, the accuracy is quite high when µ is ranging from

TABLE V: Model sizes of original model and proposed model (MB)

graph embedding model cora ampt amcpdimensions

32 Original model 1.350 3.823 6.783
Proposed model 0.376 1.088 1.897

64 Original model 2.676 7.559 13.589
Proposed model 0.735 2.017 3.600

96 Original model 3.999 11.295 20.303
Proposed model 1.105 2.990 5.318

TABLE VI: Resource utilizations on XCZU7EV

graph embedding BRAM DSP FF LUTdimensions

32 Used 183 1,379 48,609 53,330
% 58.65 79.80 10.55 23.15

64 Used 271 1,552 77,584 87,901
% 86.86 89.81 16.84 38.15

96 Used 272 1,573 86,081 108,639
% 87.18 91.03 18.68 47.15

0.005 to 0.1, while it is gradually decreased when µ > 0.1.

D. Model Size

Here, we compare the original skip-gram model and our
proposed sequential model for FPGA in terms of the model
size. Table V shows their model sizes. The results show that
the proposed model is up to 3.82 times smaller than the
original model, thanks to our simplified OS-ELM based model,
where the output-side weights β are reused for the input-
side weights (thus we do not have to retain α). This reduces
the memory consumption compared to the original skip-gram
model; thus, our proposed model is beneficial for resource-
limited IoT devices.

E. FPGA Resource Utilization

Here, we evaluate the FPGA resource utilization of the
proposed model. We use Zynq UltraScale+ XCZU7EV as
a target FPGA device which has 11Mb BRAM and 1,728
DSP slices. Table VI shows the resource utilizations when the
numbers of graph embedding dimensions are 32, 64, and 96,
respectively. In our FPGA implementation, the computational
parallelism is basically set to 32. However, when the number
of graph embedding dimensions is 64 and 96, the parallelism
is partially set to 48 and 64 so that execution times of pipeline
stages are equalized for the dataflow optimization. As shown
in the table, when the number of graph embedding dimensions
is 32, 79.80% of DSP slices are consumed because fixed-point
multiply-add operations are parallelized. When the number
of graph embedding dimensions is 64, since the number of
BRAM partitions is increased for further speedup, the BRAM
and DSP utilizations are 86.86% and 89.81%, respectively.

V. SUMMARY

In this paper, we proposed an OS-ELM based sequentially-
trainable model for graph embedding and implemented it on
an FPGA device. Compared to the original skip-gram model,
the proposed model achieved 1.89 to 2.77 times speedup.
Furthermore, the FPGA implementation achieved 45.50 to
205.25 times speedup compared to the original model on
ARM Cortex-A53 CPU. In the proposed model, by replacing

(a) Cora (micro F1 score) (b) Amazon Photo (micro F1 score) (c) Amazon Electronics Computers (micro F1 score)

Fig. 6: Impact of sequential training on accuracy

Fig. 7: Impact on scale factor µ on accuracy

the input-side weights with trained output-side weights (i.e.,
β), we achieved both the accuracy improvement and the
memory size reduction. For the sequential training of dynamic
graphs, we showed that although the original model decreases
the accuracy, the proposed model can be trained without
decreasing the accuracy. In our future work, our FPGA-based
sequentially-trainable model will be combined with an FPGA-
based random walk implementation. We are also planning to
compare our FPGA implementation with an embedded GPU
implementation in terms of the execution time and energy
efficiency in order to emphasize benefits of our FPGA-based
sequential training approach.

Acknowledgments This work was partially supported by
JST AIP Acceleration Research JPMJCR23U3, Japan.

REFERENCES

[1] A. Grover and L. Jure, “Node2vec: Scalable Feature Learning for
Networks,” in Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD), Aug. 2016, pp. 855–
864.

[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of
Word Representations in Vector Space,” arXiv Preprint 1301.3781, Sep.
2013.

[3] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,
“Continuous-Time Dynamic Network Embeddings,” in Proceedings of
the Third International Workshop on Learning Representations for Big
Networks (BigNet), Apr. 2018, pp. 969–976.

[4] S. de Winter, T. Decuypere, S. Mitrovic, B. Baesens, and J. D. Weerdt,
“Combining Temporal Aspects of Dynamic Networks with Node2Vec
for a more Efficient Dynamic Link Prediction,” in IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining
(ASONAM), Aug. 2018, pp. 1234–1241.

[5] S. Mahdavi, S. Khoshraftar, and A. An, “dynnode2vec: Scalable Dy-
namic Network Embedding,” in IEEE International Conference on Big
Data (Big Data), Dec. 2018, pp. 3762–3765.

[6] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A
Fast and Accurate Online Sequential Learning Algorithm for Feedfor-
ward Networks,” IEEE Transactions on Neural Networks, vol. 17, no. 6,
pp. 1411–1423, Nov. 2006.

[7] M. Tsukada, M. Kondo, and H. Matsutani, “A Neural Network-Based
On-device Learning Anomaly Detector for Edge Devices,” IEEE Trans-
actions on Computers, vol. 69, no. 7, pp. 1027–1044, 2020.

[8] Y. Li, S. Xie, Z. Wan, H. Lv, H. Song, and Z. Lv, “Graph-powered
learning methods in the Internet of Things: A survey ,” Machine
Learning with Applications, vol. 11, p. 100441, 2023.

[9] G. Dong, M. Tang, Z. Wang, J. Gao, S. Guo, L. Cai, R. Gutier-
rez, B. Campbell, L. E. Barnes, and M. Boukhechba, “Graph Neural
Networks in IoT: A Survey,” ACM Transactions on Sensor Networks,
vol. 19, no. 2, pp. 1–50, 2023.

[10] S. Zhang, A. Sohrabizadeh, C. Wan, Z. Huang, Z. Hu, Y. Wang,
Y. Lin, J. Cong, and Y. Sun, “A Survey on Graph Neural Network
Acceleration: Algorithms, Systems, and Customized Hardware,” arXiv
preprint arXiv:2306.14052, Jun. 2023.

[11] Y. Qiao, W. Zhang, X. Du, and M. Guizani, “Malware classification
based on multilayer perception and Word2Vec for IoT security,” ACM
Transactions on Internet Technology (TOIT), vol. 22, no. 1, pp. 1–22,
2021.

[12] S. Kim, Y. Suh, and H. Lee, “What IoT devices and applications should
be connected? Predicting user behaviors of IoT services with node2vec
embedding,” Information Processing and Management, vol. 59, no. 2,
p. 102869, 2022.

[13] H. Tan, X. Chen, Y. Chen, B. He, and W. fai Wong, “LightRW: FPGA
Accelerated Graph Dynamic Random Walks,” in Proceedings of the
ACM Management of Data, no. 1, 2023, pp. 1–27.

[14] T. Ono, T. Shoji, M. H. Waidyasooriya, M. Hariyama, Y. Aoki, Y. Kon-
doh, and Y. Nagasawa, “FPGA-Based Acceleration of Word2vec using
OpenCL,” in Proceedings of the IEEE International Symposium on
Circuits and System (ISCAS), 2019, pp. 1–5.

[15] O. Press and L. Wolf, “Using the Output Embedding to Improve
Language Models,” arXiv preprint arXiv:1608.05859, Feb. 2017.

[16] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
Representations of Words and Phrases and their Compositionality,” in
Proceedings of the International Conference on Neural Information
Processing Systems (NeurIPS), vol. 2, Dec. 2013, pp. 3111–3119.

[17] A. J. Walker, “An Efficient Method for Generating Discrete Random
Variables with General Distributions,” ACM Transactions on Mathemat-
ical Software, vol. 3, no. 3, pp. 253–256, Sep. 1977.

[18] S. Ji, N. Satish, S. Li, and P. Dubey, “Parallelizing word2vec in shared
and distributed memory,” IEEE Transactions on Parallel and Distributed
Systems, vol. 30, no. 9, pp. 2090–2100, 2019.

[19] A. Kachites, M. K. Nigram, J. Rennie, and K. Seymore, “Automating
the construction of internet portals with machine learning,” Information
Retrieval, vol. 3, pp. 127–163, 2000.

[20] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemman, “Pitfalls
of graph neural network evaluation,” arXiv preprint arXiv:1811.05868,
Nov. 2018.

[21] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, “Image-
based recommendations on styles and substitutes,” in Proceedings of
the International ACM Conference on Research and Development in
Information Retrieval (SIGIR), 2015, pp. 43–52.

