
A Multilevel NOSQL Cache Design Combining
In-NIC and In-Kernel Caches

Yuta Tokusashi and Hiroki Matsutani
Keio University

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, JAPAN 223-8522
Email: {tokusasi, matutani}@arc.ics.keio.ac.jp

Abstract—Since a large-scale in-memory data store, such as key-
value store (KVS), is an important software platform for data
centers, this paper focuses on an FPGA-based custom hardware to
further improve the efficiency of KVS. Although such FPGA-based
KVS accelerators have been studied and shown a high performance
per Watt compared to software-based processing, since their cache
capacity is strictly limited by the DRAMs implemented on FPGA
boards, their application domain is also limited. To address this
issue, in this paper, we propose a multilevel NOSQL cache architec-
ture that utilizes both the FPGA-based hardware cache and an in-
kernel software cache in a complementary style. They are referred
as L1 and L2 NOSQL caches, respectively. The proposed multilevel
NOSQL cache architecture motivates us to explore various design
options, such as cache write and inclusion policies between L1 and
L2 NOSQL caches. We implemented a prototype system of the
proposed multilevel NOSQL cache using NetFPGA-10G board and
Linux Netfilter framework. Based on the prototype implementation,
we explore the various design options for the multilevel NOSQL
caches. Simulation results show that our multilevel NOSQL cache
design reduces the cache miss ratio and improves the throughput
compared to the non-hierarchical design.

Keywords-FPGA, Key-value store, NOSQL, Multilevel cache

I. INTRODUCTION

Green computing that maximizes energy efficiency of comput-
ers is recognized as one of primary concerns toward a sustainable
planet. With an increase in the popularity of cloud computing
and social networking services, data centers that accommodate
1k to 100k servers are still expanding in the world. As data center
facilities consume a significant amount of power for computers
and cooling systems, their energy efficiency should be improved.

Especially, CPUs consume 42% of total power in such data
center servers, as reported in [1]. A common and promising
approach to significantly improve their energy efficiency is to
replace a part of software with an application specific custom
hardware. To build such a custom hardware, recently, Field-
Programmable Gate Arrays (FPGAs) have been widely deployed
for data center applications [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], due to the reconfigurability, low power
consumption, and a wide set of IP cores and I/O interfaces
supported. For example, Microsoft proposes to take advantage
of FPGAs to accelerate the Bing search engine in the next-
generation data centers [2]. Another key application in data
centers is a distributed data store, such as memcached [13], used
as a large-scale data store and memory caching system. Because
FPGA devices can be tightly coupled with I/O subsystems, such
as high-speed network interfaces [14], [15], their application to
memcached has been extensively studied recently [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [16]. An experimental result
in [5] shows that an FPGA-based standalone (i.e., FPGA board
only) memcached accelerator improves the performance per Watt
by 36.4x compared to an 8-core Intel Xeon processor. Even
with a host, it improves the performance per Watt by 15.2x.
However, a serious limitation of such FPGA-based memcached
accelerators is that their cache capacity is limited by DRAM

capacity mounted on the FPGA boards. As a DRAM module
typically has more than 200 I/O pins (e.g., 204 pins for DDR3
SO-DIMM package), the number of DRAM modules handled
by a single FPGA cannot be increased easily, as mentioned in
[12]. As DRAM capacity for a host main memory is growing,
the capacity gap between host memory and FPGA-based NIC
should be addressed.

In addition to such FPGA-based solutions, software-based
optimizations have been studied to improve the performance
of data stores [17], [18], [19], [20], [21], [22], [23]. A latency
breakdown of memcached reported in [4] shows that a packet
processing time for NIC and kernel network protocol stack is
longer than that spent in memcached software. Actually these
software-based optimizations mainly focus on how to reduce the
processing time for kernel network protocol stack and they can
be classified into two approaches: kernel bypassing and in-kernel
processing. The first approach bypasses the kernel network
protocol stack by a dedicated software framework, such as Intel
DPDK [24] and netmap [25], so that a data store application
running on user-space can access NIC devices directly. The
second approach moves the data store processing from user-
space to kernel-space [20]. Both the approaches can utilize a
large host main memory and remove the kernel overheads related
to network protocol stack and system calls. However, the FPGA-
based in-NIC cache solutions [4], [5], [6] where memcached
operations are processed inside NICs without any software
processing, would be advantageous in terms of efficiency.

In this paper, we propose a multilevel NOSQL 1[26] cache
architecture that utilizes both the FPGA-based in-NIC cache and
the in-kernel key-value cache in a complementary style. The
former cache is referred to as Level-1 (L1) NOSQL cache and
the latter is referred to as L2 NOSQL cache. Since memcached
workload has a strong data access locality as analyzed in [27],
the proposed multilevel NOSQL cache can fully exploit high
energy-efficiency of in-NIC processing, while addressing the
capacity limitation by the in-kernel cache that utilizes a huge
host main memory. This is the first paper that focuses on the
multilevel NOSQL cache architecture that combines L1 in-NIC
cache and L2 in-kernel cache systems for energy-efficient data
centers. Our contributions are summarized as follows.

• We propose a multilevel NOSQL cache design.
• We explore various design options for the multilevel

NOSQL cache, such as cache write and inclusion policies
between L1 and L2 NOSQL caches.

• We implemented a prototype system of the multilevel
NOSQL caches using NetFPGA-10G board and Linux
Netfilter framework.

• Simulation result based on the prototype shows that the

1NOSQL is referred as “Non relational” or “Not Only SQL” data store. It
includes key-value stores, column-oriented stores, document-oriented stores, and
graph databases. This paper mainly focuses on key-value stores.

TABLE I
SUMMARY OF IN-NIC PROCESSING APPROACHES.

Ref. Type Platform GET operation SET operation Storage Parallelism
[4] Standalone FPGA+1GbE In-NIC In-NIC NIC DRAM Two cores
[3] Standalone Dedicated SoC In-NIC Embedded CPU Host DRAM Single accelerator is depicted

[5], [6] Standalone FPGA+10GbE In-NIC Host CPU assisted NIC DRAM Deep pipeline
[12] Standalone FPGA+10GbE In-NIC In-NIC NIC DRAM+SSD Deep pipeline

This work (L1) Cache FPGA+10GbE In-NIC In-NIC microcontroller NIC DRAM Many cores (crossbar connected)

multilevel NOSQL cache reduces the cache miss ratio and
improves throughput compared to non-hierarchical design.

The rest of this paper is organized as follows. Section II intro-
duces related work. Section III proposes the multilevel NOSQL
cache architecture that combines L1 in-NIC cache and L2 in-
kernel cache and Section IV illustrates our implementation.
Section V evaluates the multilevel NOSQL cache and its design
options and Section VI summarizes this paper.

II. RELATED WORK

Various approaches have been studied for the performance
improvements on memcached, and their solutions can be clas-
sified into in-NIC processing approaches and kernel bypassing
approaches. We will survey some of them in this section, as the
proposed multilevel NOSQL cache that combines the in-NIC
and in-kernel caches relies on these approaches.

A. In-NIC Processing Approach
This approach first appeared in [4], which proposes an FPGA-

based standalone memcached appliance that utilizes DDR2
memory modules and a 1GbE network interface on an FPGA
board. The memcached appliance consists of dedicated hardware
modules. Both GET and SET requests are processed by the ded-
icated hardware modules. It can be parallelized by duplicating
the memcached appliance cores.

Another memcached accelerator is designed as a dedicated
SoC in [3]. It leverages the hardware prototype proposed in [4]
for GET requests, while it relies on general-purpose embedded
processors for the remaining functionalities, such as memory
allocation, key-value pair eviction and replacement, logging, and
error handling.

Another notable FPGA-based standalone memcached accel-
erator was proposed in [5], [6]. It leverages DDR3 memory
modules and a 10GbE network interface on an FPGA board. To
fully exploit the parallelism of memcached requests, the request
parsing, hash table access, value store access, and response
formatting are pipelined deeply. GET requests are processed by
the pipelined hardware, while a host CPU assists with memory
management functionalities required for SET requests. To handle
key collisions by hardware, up to eight keys mapped to the same
hash table index are looked up in parallel (i.e., 8-way). Recently,
this design is extended to support SATA3 SSDs in addition to
DRAM as storage [12] so that key-value pairs are stored in SSD
or DRAM regions, depending on the value length.

Table I summarizes the above-mentioned existing designs
and our L1 cache design of the multilevel NOSQL cache. The
existing designs can be used as a standalone memcached server,
while we will use the dedicated hardware as an L1 cache of
the proposed multilevel NOSQL cache. Since we assume that
complete NOSQL servers are running on an application layer,
the dedicated hardware is operated just as an L1 cache and
sophisticated functionalities (e.g., logging, error handling, and
data replication) can be left to the software NOSQL servers. In
the existing designs, GET requests are processed by a dedicated
hardware, while SET requests are processed by software or hard-
ware, depending on how a complicated memory management

Hardware
 (FPGA NIC)

Software

L1 Cache
(NIC DRAM)

L2 Cache

Main Storage

(Host Memory)

(Host Memory, HDD, SDD)

Request Reply

Client via Network

Large
Capacity

Small
Capacity

NOSQL Services

In-Kernel Cache

In-NIC Cache

L1 Miss

L2 Miss
Response

L2 Hit

L1 Hit

Fig. 1. Relationship between L1 and L2 NOSQL caches.

is implemented. In our L1 NOSQL cache, a microcontroller
is implemented inside an FPGA NIC to process SET requests
without any host CPU assistance. We will illustrate our L1 cache
design of the multilevel NOSQL cache in Section III-A.

B. Kernel Bypassing Approach
To improve the throughput of key-value store (KVS), a holistic

approach that includes the parallel data access, network access,
and data structure design was proposed in [17]. As the network
access, Intel DPDK is used so that the server software can
directly access NIC by bypassing the network protocol stack to
minimize the packet I/O overhead. We mainly take into account
the network access optimization (e.g., kernel bypassing) in this
paper. The other optimizations are orthogonal to the multilevel
NOSQL cache and can be applied for further efficiency.

As proposed in [20], moving the KVS into the OS kernel is an
alternative approach to remove most of the overhead associated
with the network stack and system calls. In a kernel layer,
received packets are hooked by Netfilter framework and only
KVS queries are retrieved. The retrieved queries are processed
inside the kernel with an in-kernel hash table. The response
packet is generated and sent back to the device driver.

In our multilevel NOSQL cache architecture, since we assume
that complete NOSQL servers are running on an application
layer and thus sophisticated functionalities, such as data replica-
tion, are left to the NOSQL servers, the in-kernel cache approach
is embedded as an L2 cache in the proposed NOSQL cache
hierarchy. L2 cache design will be illustrated in Section III-B.

III. NOSQL CACHE ARCHITECHTURE

Figure 1 illustrates our multilevel NOSQL cache architecture
that complementally combines the in-NIC and in-kernel caches
in order to fully exploit high energy-efficiency of in-NIC pro-
cessing, while addressing the capacity limitation by the in-kernel
cache that utilizes a huge host main memory. We assume that one
or more NOSQL databases, such as KVS, column-oriented store,

To

Network

From

Network

10G MAC

Packet
Generator

PE Affinity

PE 0

(String Type)

PE 1

(String Type)

PE n-1

(Hash Type)

DRAM
Controller

SRAM
Controller

DMA
Controller To Host via PCIe

 Hash Table

 Value Store

L1 NOSQL Cache Hit

(1)

(2)

(3) Hit

(4) Access

(5)

Free List

Crossbar Switch

Arbiter

Non-NOSQL Packets

NOSQL
Packets

(a) Cache hit case

To

Network

From

Network

10G MAC

Packet
Generator

PE Affinity

PE 0

(String Type)

PE 1

(String Type)

PE n-1

(Hash Type)

DRAM
Controller

SRAM
Controller

DMA
Controller To Host via PCIe

 Hash Table

 Value Store

Free List

L1 NOSQL Cache Miss

(1)

(2)

(3) Miss

(4)

Crossbar Switch

Arbiter

Non-NOSQL Packets

NOSQL
Packets

(b) Cache miss case

Fig. 2. Heterogeneous multi-PE design of L1 NOSQL cache and its behavior (two cases).

and document-oriented store, are running as software servers on
a machine, where FPGA-based network interfaces (FPGA NICs)
are mounted for receiving and responding NOSQL queries. On-
board DRAM of the FPGA NICs is used as the L1 NOSQL
cache, while a host main memory allocated by the kernel module
is used as the L2 NOSQL cache.

When the FPGA NIC receives a packet, the received packet
header is examined, and if it is a NOSQL query, it is processed
inside the FPGA NIC; otherwise it is transferred to an Ethernet
device driver as well as common TCP/IP packets. For NOSQL
queries, a key-value pair is extracted from the packet and the
corresponding key is looked up from a hash table in the FPGA
NIC. If the key is found in the hash table, the value stored in the
on-board DRAM is returned to the requestor (i.e., L1 NOSQL
cache hit); otherwise it is transferred to an Ethernet device driver
as well as common TCP/IP packets (i.e., L1 NOSQL cache
miss). In the Ethernet device driver of our L2 NOSQL cache,
the received packet header is examined again, and if it is a
NOSQL query, it is processed inside the in-kernel cache module;
otherwise it is transferred to a standard network protocol stack
as well as common packets. For NOSQL queries, a key-value
pair is extracted from the packet and the corresponding key
is looked up from a hash table in the in-kernel cache. If the
key is found in the hash table, the value stored in the in-kernel
cache is returned to the requestor (i.e., L2 NOSQL cache hit);
otherwise it is transferred to a network protocol stack as usual
(i.e., L2 NOSQL cache miss). In the case of L2 NOSQL cache
miss, the NOSQL query is transferred to an application layer
and processed by a corresponding NOSQL software server.

A. L1 NOSQL Cache

Figure 2 shows a datapath of our L1 NOSQL cache imple-
mented in an FPGA NIC. Only packets with NOSQL queries
(i.e., NOSQL packets) are extracted based on their service
destination port number and only NOSQL packets are transferred
to dedicated PEs (e.g., PE1) for Hash Table lookup. The other
packets are transmitted to a host machine with a DMA controller
via PCI-Express. Thus, an arbiter is implemented in front of the
DMA controller to arbitrate two input sources: NOSQL packets
which are not hit in Hash Table (i.e., L1 NOSQL cache miss
packets) and non-NOSQL packets.

L1 NOSQL cache stores key-value pairs in the on-board
DRAM modules of FPGA NIC. The key and value parts are
typically processed as variable-length data. As surveyed in
Section II, existing in-NIC KVS accelerators [5], [6] employ
a single deep pipeline in which value parts are processed as
variable-length binary data. However, a wide diversity of value
lengths (e.g., 4B to 1MB) is observed in a memcached workload
analysis [27]. Various value types, such as string, list, hash, set,

Fig. 3. Hash Table and Value Store implemented on DRAM.

and sorted set [28], are useful for practical applications. Because
their processing cycles differ significantly depending on their
value types, we built an optimized PE core for each value type,
rather than a single deep pipeline where various key-value pairs
are uniformly processed. Although we have already implemented
various PE cores, since scope of this paper is the multilevel cache
design, here we instantiate only the string PE core optimized for
string-type value.

As shown in Figure 2, multiple PE cores are connected to
a crossbar switch. PE Affinity module is in charge of packet
classification. It receives packets from Ethernet MAC (Media
Access Control) and checks their destination port number. If the
destination port number of a received packet is matched to one
of NOSQL service port numbers, PE Affinity module passes
the packet to one of PEs which are currently idle. A DRAM
controller is also connected to the crossbar switch. It is accessed
by the PE cores when they access the Hash Table and Value Store
in DRAM modules on the FPGA NIC board.

Memory management is in charge of allocating free memory
chunks and freeing unused ones. For example, a write request
(e.g., SET operation) needs to allocate a free memory chunk in
Value Store to store the new value. We employ Slab Allocator
for memory management in Value Store. Slab Allocator manages
fixed-length memory chunks of several sizes where values are
stored, as shown in Figure 3.

When it receives a SET query that stores a new value, an
unused chuck with minimum size where the new value can be
fit is removed from the Free List and then used. Assuming, for
example, a SET query contains a 24B new value, Slab Allocator
in Figure 3 allocates a 64B chunk to store the 24B new value.
Such a memory management is one of complicated functions
when we implement it as a dedicated hardware. In our L1
NOSQL cache, Slab Allocator is implemented as a microcode
running on a tiny soft-CPU processor in each PE core to access
Free List of each chunk size.

Figure 2 also illustrates its behavior of L1 NOSQL cache in
the two cases where a requested key is hit and missed on the
Hash Table, respectively. Hash Table is used to store pairs of a
key and a start address of the chuck where the corresponding
value is stored. A hashed value of a key is used as an index
(address) of the Hash Table. To read or write the chunks stored
in Value Store, a PE core performs the following steps.

1) An index in the Hash Table is calculated by hashing the
requested key.

2) A content from the Hash Table is read based on the index.
Then the requested key and the key read from the Hash
Table are compared.

3) If both the keys are identical, a value is read from the
Value Store based on the start address of the chunk (Figure
2 (a)). Otherwise, the requested key does not exist in the
Value Store (Figure 2 (b)).

L1 NOSQL cache miss occurs when the hashed value of the
requested key does not exist or it is conflicted with that of the
other keys. To mitigate the hash conflicts, we will introduce set-
associative design in Section III-C.

B. L2 NOSQL Cache

In [20], a key-value data store that uses a host memory as
a storage is implemented in Linux kernel space. KVS queries
received by the kernel are hooked so that a customized handler
is called in order to process the KVS queries inside the kernel.
Such in-kernel processing can improve the KVS performance
compared to the original user space implementation, because
the network protocol processing and related system calls can
be eliminated. As a result, about 3.3Mops performance in USR
trace is achieved as reported in [20]. In our multilevel NOSQL
cache design, as an L2 NOSQL cache, a similar in-kernel cache
is implemented in Linux kernel using Netfilter framework.

C. NOSQL Cache Hierarchy

Here, we discuss design options for L1 and L2 NOSQL cache
hierarchy. More specifically, the following points are introduced
and their pros and cons are discussed in this section. They will
be evaluated in Section V in terms of NOSQL cache miss ratio.

• Cache write policies between L1 and L2 NOSQL caches
(i.e., write-through vs. write-back)

• Cache associativities on Hash Table of L1 NOSQL cache
• Inclusion policies between L1 and L2 NOSQL caches (i.e.,

inclusive and non-inclusive)
• Slab size configurations of L1 NOSQL cache (i.e., the

number of free memory blocks for each size)
1) Write-Back vs. Write-Through: Cache write policy is an

important design choice for multilevel cache design. In our
multilevel NOSQL cache, write-back policy can reduce the
traffic amount between L1 and L2 NOSQL caches, because
written data are not transferred from L1 to L2 NOSQL caches
until modified (i.e., dirty) cache blocks in the L1 NOSQL cache
are evicted. Although in write-back policy the cache blocks in L1
NOSQL cache are not consistent with those in L2 NOSQL cache
internally, such inconsistency is never exposed to applications.
In write-through policy, cache blocks in L2 NOSQL cache are
updated whenever those in L1 NOSQL cache are updated, and
thus the traffic amount between L1 and L2 NOSQL caches
increases. The problem of such write-through policy is that the
write performance of L1 NOSQL cache is restricted by the L2
NOSQL cache bandwidth. We will evaluate the write-back and
write-through policies in Section V-A.

2) Cache Associativities on Hash Table: As illustrated in
Section III-A, to access cached key-value data in Value Store,
the key is hashed to compute the index in the Hash Table where
a start address of the cached key-value data in Value Store is
stored. There is a possibility that different keys generate an
identical hashed value, but only one of them can be stored in
Hash Table and the others will be evicted. Such a situation is
called a hash conflict.

To avoid hash conflicts and NOSQL cache misses, we can
increase the associativity of Hash Table. That is, in the n-way
set associative Hash Table, up to n different keys whose hashed
values are identical can be stored in Hash Table. As the number
of ways increases, L1 NOSQL cache misses due to the Hash
Table conflicts are typically decreased. For example, an 8-way
Hash Table is used in Xilinx’s FPGA memcached appliance to
avoid the hash conflicts [5]. Please note that our design accepts
variable-length keys. More specifically, a key with up to 64B size
can be stored in a single Hash Table entry, while that larger than
64B is stored in multiple Hash Table entries. We will evaluate
the set-associative design of Hash Table in Section V-B.

3) Inclusion vs. Non-Inclusion: Inclusion policy (e.g., in-
clusive or non-inclusive) is an important design choice for
multilevel caches. When our L1 and L2 NOSQL caches are
inclusive, cached data in L1 NOSQL cache are guaranteed to
be in L2 NOSQL cache. When they are non-inclusive, cached
data are guaranteed to be in at most one of L1 and L2 NOSQL
caches. Their behaviors are differentiated below.

• Assuming that a GET query is missed at L1 NOSQL
cache and hit at L2 NOSQL cache, if non-inclusive policy
is enforced, the cached block in L2 NOSQL cache is
transferred to L1 NOSQL cache and then the cached block
in L2 is deleted. If inclusive policy is enforced in the same
situation, the cached block in L2 is not deleted.

• Assuming that an unmodified cached data in L1 NOSQL
cache is evicted, if non-inclusive policy is enforced, the
cached data in L1 NOSQL cache is transferred to L2
NOSQL cache and then the original cached block in L1 is
deleted. If inclusive policy is enforced in the same situation,
we do not have to copy the cached block in L1 to L2.

• Assuming that a query is missed at both L1 and L2 NOSQL
caches, if inclusive policy is enforced, the requested data
retrieved from NOSQL server are required to be cached
in both L1 and L2 NOSQL caches. This behavior can be
simply implemented, because the requested data retrieved
from NOSQL server are naturally transferred to the client
machine via Ethernet device driver (i.e., L2 NOSQL cache)
and FPGA NIC (i.e., L1 NOSQL cache).

Non-inclusive policy is advantageous in terms of cache ef-
ficiency, while inclusive policy is simple to implement in L1
NOSQL cache. However, inclusive policy increases the traffic
between L1 and L2 NOSQL caches, which may degrade the
throughput. We will evaluate the inclusive and non-inclusive
policies in terms of total cache miss ratio when L1 and L2
NOSQL cache sizes are varied in Section V-C.

4) Eviction Policies on Hash Table: In Section III-C2, we
have introduced set associativities on Hash Table design to
reduce L1 NOSQL cache misses due to hash conflicts. By
preparing multiple ways for Hash Table, multiple key-value pairs
whose hashed keys are identical can be stored in Hash Table.
Assuming that a new key-value pair is going to be stored in Hash
Table but all the ways are in use, one of existing ways in Hash
Table will be replaced with the new key-value pair. Eviction
policy defines which way will be evicted in such situations. For
example, the following eviction policies can be used.

TABLE II
L1 NOSQL CACHE DESIGN ENVIRONMENT.

CPU Intel(R) Core(TM) i5-4460
Host memory 4GB

OS CentOS release 6.7
Kernel Linux kernel 2.6.32-504

NIC (FPGA) NetFPGA-10G

TABLE III
TARGET FPGA BOARD FOR L1 NOSQL CACHE.

Board NetFPGA-10G
FPGA Virtex-5 XC5VTX240T
DRAM 288MB RLDRAM-II
SRAM 27MB QDRII SRAM
PCIe PCIe Gen2 x8

Network I/O SFP+ x4

• Random: One of ways is randomly selected to be replaced
with new key-value pair. A simple implementation without
a random generator is that the hashed value of the new key-
value pair is used to select one of the ways to be evicted.

• LRU: The least recently used way is selected to be evicted.
The design complexity increases when the number of ways
is greater than two.

5) Slab Size Configurations in L1 NOSQL Cache: A mem-
cached workload analysis in [27] reports that 90% of the
requested data sizes are less than 1KB. The study shows that
requested key-value sizes are mostly about 20B in USR work-
load, while large values with up to 1MB are requested in ETC
and APP workloads. As illustrated in Section III-A, in our L1
NOSQL cache, a list of free memory blocks are preliminarily
allocated for each value size (e.g., 64B, 128B, 256B). The
number of memory blocks preliminarily allocated for each value
size should be carefully selected. It can be further optimized if
the workload is predictable so that the majority of requested
key-value data can be fit to the allocated memory blocks.

L1 NOSQL cache is implemented on an FPGA board. Since
L1 NOSQL cache capacity is limited, allocating large memory
blocks (e.g., 1MB blocks) may significantly reduce the number
of small-sized cache blocks and increases the L1 NOSQL cache
miss ratio. Therefore, it may be required to determine the upper
limit of memory block sizes allocated. In this case, key-value
data larger than the upper limit are not cached in L1 NOSQL
cache. We will evaluate various slab configurations of the sizes
and numbers of memory blocks in Section V-D.

IV. SYSTEM IMPLEMENTATION

In this section, a prototype implementation of our multilevel
NOSQL cache is illustrated. Only the necessary functions of
the L1 NOSQL cache are implemented to explore the design
choices. More specifically, multiple KVS PEs introduced in
Section III-A are implemented in the L1 NOSQL cache.

A. Design Environment
Table II lists the design environment. Our L1 NOSQL cache

is implemented on NetFPGA-10G board by partially using the
reference NIC design provided by NetFPGA Project [14]. Table
III shows the hardware specification. FPGA device used is Xilinx
Virtex-5 XC5VTX240T. A 10GbE network interface is used for
communication. Hash Table and Value Store in the L1 NOSQL
cache are implemented on a 288MB RLDRAM-II memory on
the FPGA board 2. Design tool used is Xilinx ISE 13.4.

2The memory capacity of NetFPGA-10G board is very small, but newer FPGA
boards have more capacity (e.g., 8GB DDR3 SDRAM for NetFPGA-SUME).

 Hash Table
Access Module

Key Register Status
Management
Module

Execution Module

Soft CPU

RAM

To Packet Generator via Crossbar Switch

 SRAM
(Shared by PEs)

Fetch

From PE Affinity via Crossbar Switch

Hash
Table

Value
Store

 DRAM
(Shared by PEs)

String PE

Hash Func Value Register

Via Crossbar Switch

Via Crossbar Switch

Via Crossbar
Switch

Free List

Fig. 4. KVS PE core architecture.

B. Implementation of L1 and L2 NOSQL Caches
We implemented a prototype of an L1 NOSQL cache that

consists of KVS PE cores of the string type. The KVS PEs
process SET and GET operations. Our design accepts variable-
length values, while the key length is fixed to 64B for simplicity.
CRC32 is implemented as a hash function. KVS PEs and a
DRAM controller are connected via a crossbar switch. A simple
fixed-priority arbiter is used for the crossbar switch. Data width
of the crossbar is 128bit. We employ UDP as a transport-layer
protocol as it is simple and low-overhead 3.

Figure 4 shows a block diagram of a string type KVS PE.
Received KVS packets are passed to Fetch module and they are
parsed as operation type (e.g., SET, GET, and DELETE), key,
and value. In the GET operation, the requested key is examined
in the L1 NOSQL cache and if the requested key-value pair
does not exist in the cache, the request packet is passed to the
crossbar switch and then transferred to the host machine. If the
requested key-value pair exists in the L1 NOSQL cache, the
response packet is generated by swapping the source/destination
IP addresses and source/destination port numbers of the original
request packet and adding the requested value.

Slab Allocator is implemented as a microcode running on
a MIPS R3000 compatible soft processor. Free List is a list
structure that manages unused memory chunks. It is currently
implemented as Block RAMs in the FPGA for simplicity, but
we will implement it with on-board SRAMs. When the KVS PE
executes a SET operation that requires a free memory chunk, it
interrupts the soft processor so that the Slab Allocator returns
an unused chunk from Free List. In the case of a DELETE
operation, Slab Allocator seeks the corresponding chunk and
appends it to Free List.

As L2 NOSQL cache, we implemented an in-kernel KVS
cache as a loadable kernel module. Netfilter framework is used
to process KVS packets in kernel. A customized handler is called
when the kernel receives the KVS packets.

C. Area Evaluation
We evaluate the FPGA area utilization of KVS PEs, which

are used in L1 NOSQL cache. Horizontal scalability that allows
us to add more PEs depending on required performance is
an advantage of our heterogenous multi-PE design. Our target
device is Xilinx Virtex-5 XC5VTX240T on NetFPGA-10G.

We implemented KVS PEs on the target device. Figure 5
shows the slice utilization of the design. “Reference NIC” shows
the slice utilization for the standard 10GbE NIC functions that
include four 10G MAC cores and a DMA controller for PCI-
Express Gen2 x8. “String PE + Reference NIC” shows that with

3UDP is supported in memcached in addition to TCP.

TABLE IV
L1 NOSQL CACHE THROUGHPUT WITH A SINGLE KVS PE.

Query type Average throughput [Mops]
GET (HIT) 1.42354

GET (MISS) Determined by L2 NOSQL cache
SET (HIT) 2.20104

SET (MISS) 0.71049

up to eleven PEs and an RLDRAM controller in addition to
Reference NIC. Each string PE has a MIPS R3000 compatible
processor. Up to eleven PEs can be implemented on the Virtex-5
device or larger devices.

D. Throughput
We evaluate the query processing throughput of L1 NOSQL

cache. On the client machine, netmap-based [25] query injector
that can fully utilize 10GbE bandwidth is used to generate
queries. The following four query types are used for the through-
put evaluation. Each type has a key and a value. Their lengths
are fixed to 64B.

• “SET (HIT)” generates SET queries which are always hit
in L1 NOSQL cache and modify the cache.

• “SET (MISS)” generates SET queries which are always
missed in L1 NOSQL cache. In this case, a memory
allocation is performed for each query in L1 NOSQL cache
and thus the performance will be degraded.

• “GET (HIT)” generates GET queries which are always hit
in L1 NOSQL cache by caching the keys to be requested
in L1 NOSQL beforehand. The string PE returns response
packets that contain the key-value pair requested in the GET
queries to the client.

• “GET (MISS)” generates GET queries that never hit in L1
NOSQL cache. Such queries are transferred to L2 NOSQL
cache and processed. Thus, its throughput is determined by
that of L2 NOSQL cache rather than L1 NOSQL cache.

Table IV shows average throughputs of the four query types
with a single KVS PE on L1 NOSQL cache. Throughput of
“GET (HIT)” is 1.42Mops (operation per second). Throughput
of “SET (HIT)” is 2.20Mops, while that of “SET (MISS)” is
0.71Mops because memory allocation on Value Store is per-
formed for each query. In “SET (MISS)” case, a soft processor
running on the KVS PE executes a memory allocation which
takes about 200 clock cycles. The KVS PE is stalled during the
memory allocation, and thus the throughput is degraded.

We can calculate the expected throughputs when assum-
ing multiple PEs. NetFPGA-10G board is equipped with two
RLDRAM-II modules and their aggregate throughput is 38Gbps.
Thus, the memory bandwidth including the arbitration for the
DRAM controller is not a major performance bottleneck when
a given workload is under 38Gbps. An expected aggregated
throughput is calculated as TTotal = min(TMem, TNet, n ×
TPE), where TMem, TNet, n, and TPE denote the memory
bandwdith, network bandwidth, single PE performance, and the
number of PEs, respectively. TMem and TNet are set to 38Gbps
and 10Gbps, respectively. TPE is set based on Table IV. Figure
6 shows the result. It shows that 10Gbps network bandwidth is
a major source of the performance bottleneck on L1 NOSQL
cache. It also shows that seven PEs and nine PEs are required
to achieve the 10Gbps GET and SET throughput, respectively.

V. SIMULATION RESULTS

Various design options are available for the proposed mul-
tilevel NOSQL cache architecture in terms of the multilevel
organizations and cache policies, as proposed in Section III. In
this section, we will quantitively explore the proposed design

options by using a simulator with real memcached traces so that
this paper would be the first guideline to build the multilevel
NOSQL cache architecture that utilizes the FPGA-based in-NIC
cache and the in-kernel key-value cache.

We generated the memcached traces based on a memcached
workload analysis results [27]. In [27], the following five work-
load classes are analyzed in terms of operation types (e.g.,
GET, SET, and DELETE) ratio, key size distribution, value size
distribution, key appearance, and so on.

• USR : Key sizes are 16B and 21B. Value sizes are 2B.
• SYS : Most key sizes are less than 30B. 70% of value sizes

are around 500B.
• APP : 90% of key sizes are 31B. Values are around 270B.
• ETC : Most key sizes are 20-40B. Small amount of values

are very large (e.g., 1MB).
• VAR : Key sizes are 32B. 80% of value sizes are 50B.

Since we measured the above-mentioned values from graphs in
[27] by hand, these values may contain certain errors.

A. Write-Through vs. Write-Back
Figure 7 compares the write-through and write-back policies

in terms of DRAM traffic between L1 and L2 NOSQL caches.
In VAR trace, more than 70% of queries are SET operations
that update the L1 NOSQL cache. SYS trace also contains a lot
of SET operations (i.e., more than 30% of whole queries). In
these SET intensive traces, the write-through policy demands a
quite high bandwidth, while in the other traces both the policies
require a similar bandwidth.

The 10GbE and PCI-Express interfaces would limit the write
throughput between these caches. Theoretical DMA transfer
capacity is 4GB/s and 7.69GB/s in PCI-Express Gen2 x8 and
PCI-Express Gen3 x8, respectively. A PCI-Express Gen3 x8
interface achieves 7.06GB/s throughput in [29]. We assume
10GbE as a network I/O. In the graph, these 10GbE and PCI-
Express bandwidth values are shown as horizontal lines.

Although a performance gain of write-back may not be
significant in the read-intensive workload, write-back policy
can reduce the DMA traffic in write-intensive workload. When
assuming a 10GbE network bandwidth, the DMA bandwidth
between L1 and L2 NOSQL caches is a bottleneck when write-
through policy is used for VAR and SYS traces.

B. Cache Associativity
The multilevel NOSQL caches were simulated by varying the

set associativity N of the L1 NOSQL cache, where N = 1, 2,
4, and 8. In all the cases, Hash Table and Value Store sizes
of the L1 NOSQL cache are set so as to fit in the RLDRAM-
II memory on the FPGA board. Figure 8 shows the simulation
results, where X-axis shows the memcached trace and Y-axis
shows the L1 NOSQL cache miss ratio. In USR, SYS, and VAR
traces, when N is varied from 2 to 8, the cache miss ratio is
reduced by 2-7% compared to the direct mapped cache (i.e., N
= 1). In ETC trace, the associativity does not affect the miss
ratio due to less hash conflicts.

C. Inclusion vs. Non-inclusion
Here we define “L2/L1 capacity ratio” as the ratio of the

L2 NOSQL cache capacity against that of L1 NOSQL cache
(e.g., the ratio is two when L2 is twice larger than L1). We will
discuss inclusion and non-inclusion design options for L1 and L2
NOSQL caches when the L2/L1 capacity ratio is varied. Figure
9 compares the inclusion and non-inclusion options, where X-
axis shows the L2/L1 capacity ratio and Y-axis shows the cache
miss ratio. When the capacity ratio is 1, the non-inclusion option

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10 11

S
lic

e
U

til
iz

at
io

n
[%

]

Number of PEs

String PE
Reference NIC

Fig. 5. Area utilization on Virtex-5 XC5VTX240T.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

 T
hr

ou
gh

pu
t [

M
op

s]

Number of PEs

GET (Hit)
SET (Miss)

SET (Hit)
10G Line Rate (SET)
10G Line Rate (GET)

RLDRAM-II Effective value

Fig. 6. Aggregated throughput with multiple string
PEs on NetFPGA-10G.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

USR APP ETC SYS VAR

D
M

A
 tr

af
fic

 b
et

w
ee

n
L1

 &
 L

2
N

O
S

Q
L

ca
ch

es
 [M

B
/s

]

Write Back Traffic(L1 to L2)
Write Through Traffic(L1 to L2)

Read Traffic(L2 to L1)
10GbE Line Rate

Fig. 7. DMA traffic between L1 and L2 NOSQL
caches (write-back vs. write-through).

 0

 5

 10

 15

 20

 25

 30

 35

USR APP ETC SYS VAR

C
ac

he
 M

is
s

R
at

io
 [%

]

Direct Map
Assoc 2
Assoc 4
Assoc 8

Fig. 8. Cache miss ratio on set-associative L1
NOSQL cache.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32 64 128 256 512

C
ac

he
 M

is
s

R
at

io
 [%

]

Cache Capacity Ratio (L2 / L1)

Inclusion USR
Non-inclusion USR

(a) USR trace

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32 64 128 256 512

C
ac

he
 M

is
s

R
at

io
 [%

]

Cache Capacity Ratio (L2 / L1)

Inclusion SYS
Non-inclusion SYS

(b) SYS trace

Fig. 9. Inclusive policy vs. non-inclusive policy.

reduces the cache miss ratio by up to 15% compared to the
inclusion. Please note that inclusion option when the capacity
ratio is 1 implicates the results with only L1 NOSQL cache (no
L2 NOSQL cache). In this case, the cache miss ratio is quite
high (e.g., 75.8% and 52.1% in USR and SYS, respectively),
which demonstrates the necessity of our multilevel NOSQL
cache design. When the capacity ratio is over 16, differences
between the inclusion and non-inclusion in terms of cache miss
ratio become quite small. Assuming L1 NOSQL capacity is
288MB and 8GB, non-inclusion is an efficient option only when
L2 NOSQL capacity is less than 4.6GB and 128GB, respectively.

D. Slab Configurations for L1 NOSQL Cache

Our L1 NOSQL cache supports variable-length keys and
values. Since the value sizes differ largely, we employ Slab
Allocator for the memory allocation. Up to six chunk sizes (a
power of 2 from 64B) are supported by configuring the Slab
Allocator. Table V shows various slab configurations used in this
experiment. Each configuration type has a unique characteristic
(e.g., uniform distribution, more small-sized slabs).

Figure 10 shows simulation result of these slab configurations.
In USR, more than 90% of queries access small-sized values
(e.g., 2B), so the slab configuration that has more small-sized
chunks can reduce the cache miss ratio. In APP, the average
value size is about 270B. When Type C configuration that does
not have large-sized chunks is applied to APP, the cache miss
ratio is more than 70% since most requested values cannot be
cached in L1 NOSQL cache. In APP, we need 512B chunks to
store frequently-requested values; thus Type E that has many
large-sized chunks can reduce the cache miss ratio to 40%.

We can improve the cache miss ratio by configuring the chunk
sizes and their numbers in L1 NOSQL cache in response to value
sizes in an expected workload. In our design, soft-processor
in L1 NOSQL cache can configure the chunk sizes and their
numbers at a boot time.

TABLE V
CHUNK SIZE CONFIGURATIONS (IN TYPE A, # OF 64B CHUNKS IS 70K).

Type 64B 128B 256B 512B 1kB 2kB Note
A 70k 70k 70k 70k 70k 70k Uniform
B 120k 100k 80k 60k 40k 20k More small sizes
C 160k 140k 120k 0 0 0 No large sizes
D 140k 120k 100k 30k 20k 10k More small sizes
E 20k 40k 60k 80k 100k 120k More large sizes

E. Cache Miss Ratio vs. Throughput
Finally, Figure 11 compares the proposed multilevel NOSQL

cache and L1 NOSQL only designs in terms of the total
throughput when the L1 NOSQL cache miss ratio is varied from
10% to 90%. GET queries are injected in a 10Gbps line rate
(i.e., 9.32Mops). In the multilevel NOSQL cache case (Figure
11(a)), L2 NOSQL cache miss ratio is fixed at 15%, which
is a conservative assumption. As L1 NOSQL cache miss ratio
increases, L2 NOSQL cache and memcached software process
more queries. Please note that the throughput decreases quite
slowly in the multilevel NOSQL cache case when L1 NOSQL
cache miss ratio is less than 40%, while the throughput decreases
linearly in the L1 NOSQL only case.

VI. SUMMARY

We proposed a multilevel NOSQL cache architecture that
utilizes both the FPGA-based in-NIC cache (L1 NOSQL cache)
and the in-kernel key-value cache (L2 NOSQL cache) in a
complementary style. We implemented a prototype of our
multilevel NOSQL cache using NetFPGA-10G with Virtex-
5 XC5VTX240T for L1 NOSQL cache and Linux Netfilter
framework for L2 NOSQL cache. Based on the prototype
implementation, we showed that 7-9 PEs are needed for a
10Gbps line rate KVS processing. We performed simulations to
explore various design options for the multilevel NOSQL cache

 10

 20

 30

 40

 50

 60

 70

 80

USR APP ETC SYS VAR

C
ac

he
 M

is
s

R
at

io
 [%

]

A
B
C
D
E

Fig. 10. Slab configurations on L1 NOSQL cache.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t [

M
op

s]

Cache Miss Ratio on L1 NOSQL Cache [%]

L1 NOSQL Cache
L2 NOSQL Cache (miss ratio 15%)

memcached software

(a) Multilevel NOSQL cache (L1 and L2)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 8
 8.5

 9
 9.5
 10

10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t [

M
op

s]

Cache Miss Ratio on L1 NOSQL Cache [%]

L1 NOSQL Cache
memcached software

(b) Only L1 NOSQL cache

Fig. 11. Multilevel NOSQL cache miss ratio vs. throughput.

architecture, such as the write policies between L1 NOSQL
cache and L2 NOSQL cache, hash table design in L1 NOSQL
cache, inclusion policies bewteen L1 NOSQL cache and L2
NOSQL cache, slab configurations in L1 NOSQL cache. As a
write policy between L1 and L2, the write back policy should
be selected to reduce DMA traffic between NIC and host, which
is a limiting factor of the throughput. As the slab configuration,
the slab sizes distribution should be carefully selected so as to
meet an expected workload since L1 NOSQL cache capacity
is typically limited. Simulation results demonstrated that our
multilevel NOSQL cache design reduced the cache miss ratio
and improved the throughput compared to the L1 NOSQL cache
only design. Based on the above-mentioned implementation and
simulations results, this paper would be the first guideline to
build the multilevel NOSQL cache architecture that utilizes both
the L1 NOSQL cache and L2 NOSQL cache.

ACKNOWLEDGMENT

This work was supported by SECOM Science and Technology
Foundation and JST PRESTO.

REFERENCES

[1] L. A. Barroso and U. Holzle, The Datacenter as a Computer, 2nd ed.
Morgan & Claypool Publishers, Jul. 2013.

[2] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A Reconfigurable
Fabric for Accelerating Large-scale Datacenter Services,” in Proceedings
of the International Symposium on Computer Architecture (ISCA’14), Jun.
2014, pp. 13–24.

[3] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch, “Thin
Servers with Smart Pipes: Designing SoC Accelerators for Memcached,”
in Proceedings of the International Symposium on Computer Architecture
(ISCA’13), Jun. 2013, pp. 36–47.

[4] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala, “An FPGA Memcached Appliance,” in Proceedings of the
International Symposium on Field Programmable Gate Arrays (FPGA’13),
Feb. 2013, pp. 245–254.

[5] M. Blott, K. Karras, L. Liu, K. Vissers, J. Baer, and Z. Istvan, “Achieving
10Gbps Line-rate Key-value Stores with FPGAs,” in Proceedings of the
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’13), Jun.
2013.

[6] M. Blott and K. Vissers, “Dataflow Architectures for 10Gbps Line-
rate Key-value-Stores,” in Proceedings of the IEEE Symposium on High
Performance Chips (HotChips’13), Aug. 2013.

[7] M. Lavasani, H. Angepat, and D. Chiou, “An FPGA-based In-Line Ac-
celerator for Memcached,” IEEE Computer Architecture Letters, vol. 13,
no. 2, pp. 57–60, Jul. 2014.

[8] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo, D. Dil-
lenberger, and S. Asaad, “Database Analytics Acceleration Using FPGAs,”
in Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT’12), Sep. 2012, pp. 411–420.

[9] J. M. Cho and K. Choi, “An FPGA Implementation of High-throughput
Key-value Store Using Bloom Filter,” in Proceedings of the International
Symposium on VLSI Design, Automation and Test (VLSI-DAT’14), Apr.
2014, pp. 1–4.

[10] E. S. Fukuda, H. Inoue, T. Takenaka, D. Kim, T. Sadahisa, T. Asai,
and M. Motomura, “Caching Memcached at Reconfigurable Network
Interface,” in Proceedings of the International Conference on Field-
programmable Logic and Applications (FPL’14), Sep. 2014, pp. 1–6.

[11] Z. Istvan, G. Alonso, M. Blott, and K. Vissers, “A Flexible Hash Table
Design for 10Gbps Key-value Stores on FPGAs,” in Proceedings of the
International Conference on Field-programmable Logic and Applications
(FPL’13), Sep. 2013, pp. 1–8.

[12] M. Blott, L. Liu, K. Karras, and K. Vissers, “Scaling Out to a Single-Node
80Gbps Memcached Server with 40Terabytes of Memory,” in Proceedings
of the USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage’15), Jul. 2015.

[13] Danga Interactive, “Memcached - A Distributed Memory Object Caching
System,” http://memcached.org/.

[14] NetFPGA Project, http://netfpga.org/.
[15] N. Zilberman, Y. Audzevich, G. Covington, and A. Moore, “NetFPGA

SUME: Toward 100 Gbps as Research Commodity,” IEEE Micro, vol. 34,
no. 5, pp. 32–41, Sep. 2014.

[16] J. Lockwood and M. Monga, “Implementing ultra low latency data center
services with programmable logic,” in Proceedings of the IEEE Symposium
High-Performance Interconnects (HOTI’15), Aug 2015, pp. 68–77.

[17] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A Holistic
Approach to Fast In-Memory Key-Value Storage,” in Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’14), Apr. 2014, pp. 429–444.

[18] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M.
Rumble, E. Stratmann, and R. Stutsman, “The Case for RAMClouds:
Scalable High-performance Storage Entirely in DRAM,” ACM SIGOPS
Operating System Review, vol. 43, no. 4, pp. 92–105, Jan. 2010.

[19] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
Concurrent MemCache with Dumber Caching and Smarter Hashing,” in
Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI’13), 2013, pp. 371–384.

[20] Y. Xu, E. Frachtenberg, and S. Jiang, “Building a High-performance Key-
value Cache as an Energy-efficient Appliance,” Performance Evaluation,
vol. 79, pp. 24–37, Sep. 2014.

[21] X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding, S. Jiang, and Z. Wang,
“LAMA: Optimized Locality-aware Memory Allocation for Key-value
Cache,” in Proceedings of the USENIX Annual Technical Conference
(ATC’15), Jul. 2015, pp. 57–69.

[22] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G.
Andersen, O. Seongil, S. Lee, and P. Dubey, “Architecting to Achieve
a Billion Requests Per Second Throughput on a Single Key-value Store
Server Platform,” in Proceedings of the International Symposium on
Computer Architecture (ISCA’15), Jun. 2015, pp. 476–488.

[23] C. Mitchell, Y. Geng, and J. Li, “Using One-Sided RDMA Reads to Build
a Fast, CPU-Efficient Key-Value Store,” in Proceedings of the USENIX
Annual Technical Conference (ATC’13), Jun. 2013, pp. 103–114.

[24] Intel, “Intel Data Plane Development Kit (Intel DPDK),” http://www.intel.
com/go/dpdk.

[25] L. Rizzo, “netmap: A Novel Framework for Fast Packet I/O,” in Proceed-
ings of the USENIX Security Symposium (Security’12), Aug. 2012, pp.
101–112.

[26] Paramod J. Sadalarge and Martin Fowler, “NoSQL Distilled: A Brief Guide
to the Emerging World of Polyglot Persistence,” Aug. 2012.

[27] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Workload
Analysis of a Large-scale Key-value Store,” in Proceedings of the Inter-
national Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS’12), Jun. 2012, pp. 53–64.

[28] S. Sanfilippo, “Redis,” http://redis.io/.
[29] D. de la Chevallerie, J. Korinth, and A. Koch, “ffLink: A Lightweight High-

Performance Open-Source PCI Express Gen3 Interface for Reconfigurable
Accelerators,” in Proceedings of the International Symposium on Highly
Efficient Accelerators and Reconfigurable Technologies (HEART’15), Jun.
2015.

