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An Overflow/Underflow-Free Fixed-Point Bit-Width Optimization
Method for OS-ELM Digital Circuit∗
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SUMMARY Currently there has been increasing demand for real-time
training on resource-limited IoT devices such as smart sensors, which real-
izes standalone online adaptation for streaming data without data transfers
to remote servers. OS-ELM (Online Sequential Extreme Learning Ma-
chine) has been one of promising neural-network-based online algorithms
for on-chip learning because it can perform online training at low computa-
tional cost and is easy to implement as a digital circuit. Existing OS-ELM
digital circuits employ fixed-point data format and the bit-widths are of-
ten manually tuned, however, this may cause overflow or underflow which
can lead to unexpected behavior of the circuit. For on-chip learning sys-
tems, an overflow/underflow-free design has a great impact since online
training is continuously performed and the intervals of intermediate vari-
ables will dynamically change as time goes by. In this paper, we propose
an overflow/underflow-free bit-width optimization method for fixed-point
digital circuits of OS-ELM. Experimental results show that our method
realizes overflow/underflow-free OS-ELM digital circuits with 1.0x - 1.5x
more area cost compared to the baseline simulation method where overflow
or underflow can happen.
key words: OS-ELM, bit-width optimization, fixed-point design

1. Introduction

Currently there has been increasing demand for real-time
training on resource-limited IoT devices (e.g. smart sen-
sors and micro computers), which realizes standalone on-
line adaptation for streaming data without transferring data
to remote servers, and avoids additional power consump-
tion for communication [1]. OS-ELM (Online Sequential
Extreme Learning Machine) [2] has been one of promising
neural-network-based online algorithms for on-chip learning
because it can perform online training at low computational
cost and is easy to implement as a digital circuit. Several
papers have proposed design methodologies and implemen-
tations of OS-ELM digital circuits and shown that OS-ELM
can be implemented in a small-size FPGA and still be able to
perform online training in less than one millisecond [1], [3]–
[5].

Existing OS-ELM digital circuits often employ fixed-
point data format and the bit-widths are manually tuned ac-
cording to the requirements (e.g. resource and timing con-
straints), however, this may cause overflow or underflow
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which can lead to unexpected behavior of the circuit. A lot
of works have proposed bit-width optimization methods that
analytically derive the lower and upper bounds of intermedi-
ate variables and automatically optimize the fixed-point data
format, ensuring that overflow/underflow never happens [6]–
[8]. For on-chip learning systems, an overflow/underflow-
free design has a significant impact because online training
is continuously performed and the intervals of intermediate
variables will dynamically change as time goes by.

In this paperwe propose an overflow/underflow-free bit-
width optimization method for fixed-point OS-ELM digital
circuits. This work makes the following contributions.

• We propose an interval analysis method for OS-ELM
using affine arithmetic [9], one of the most widely-
used interval arithmetic models. Affine arithmetic has
been used in a lot of existing works for determining
optimal integer bit-widths that never cause overflow
and underflow.

• In affine arithmetic, division is defined only if the de-
nominator does not include zero; otherwise the algo-
rithm cannot be represented in affine arithmetic. OS-
ELM’s training algorithm contains one division and
we analytically prove that the denominator does not
include zero. Based on this proof, we also propose a
mathematical trick to safely represent OS-ELM in affine
arithmetic.

• Affine arithmetic can represent only fixed-length com-
putation graphs and unbounded loops are not supported
in affine arithmetic. However, OS-ELM’s training al-
gorithm is an iterative algorithm where current outputs
are used as the next inputs endlessly. We propose an
empirical solution for this problem based on simulation
results, and verify its effectiveness in the evaluation
section.

• We evaluate the performance of our interval analysis
method, using an fixed-point IP core called OS-ELM
Core to demonstrate the practicality of our method.

The rest of this paper is organized as follows; Section 2
gives a brief introduction of basic technologies behind this
work. Our interval analysis method is proposed in Sect. 3.
Section 4 briefly describes the design of OS-ELMCore. The
proposed interval analysis method is evaluated in Sect. 5.
Section 7 concludes this paper. Please refer to Table 4 and
Table 5 for the notation rules and the description description
of special variables that frequently appear in this paper.

Copyright © 2022 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Extreme learning machine. n/Ñ /m represents the number of in-
put/hidden/output nodes. α ∈ Rn×Ñ is a weight matrix connecting the
input and the hidden layers. β ∈ RÑ×m is another weight matrix connect-
ing the hidden and output layers. b ∈ R1×Ñ is a bias vector of the hidden
layer, and G is an activation function applied to the hidden layer output. α
and b are non-trainable constant parameters initialized with random values.

2. Preliminaries

2.1 ELM

We first introduce ELM (Extreme Learning Machine) [10]
prior to OS-ELM. ELM illustrated in Fig. 1 is a neural-
network-based model that consists of an input layer, one
hidden layer, and an output layer. If an n-dimensional input
X ∈ Rk×n of batch size = k is given, the m-dimensional pre-
diction output Y ∈ Rk×m can be computed in the following
formula.

Y = G(X · α + b)β (1)

ELM uses a finite number of input-target pairs for train-
ing. Suppose an ELMmodel can approximate N input-target
pairs {X ∈ RN×n,T ∈ RN×m} with zero error, it implies
there exists β that satisfies the following equation.

G(X · α + b)β = T (2)

Let H ≡ G(X ·α+ b) then the optimal solution β∗ is derived
with the following formula.

β∗ = H†T (3)

H† is the pseudo inverse of H . The whole training pro-
cess finishes by replacing β with β∗. ELM takes one-shot
optimization approach unlike backpropagation-based neural-
networks (BP-NNs), whichmakes thewhole training process
faster. ELM is known to finish optimization process faster
than BP-NNs [10].

2.2 OS-ELM

ELM is a batch learning algorithm; ELM needs to re-train
with the whole training dataset, including training samples
already learned in the past, in order to learn new training
samples. OS-ELM [2] is an ELM variant that can perform
online learning instead of batch learning. Suppose the ith

training samples {Xi ∈ R
ki×n,Ti ∈ R

ki×m} of batch size
= ki is given, OS-ELM computes the ith optimal solution βi
in the following formula.

Pi = Pi−1 − Pi−1H
T
i (I + HiPi−1H

T
i )
−1HiPi−1

βi = βi−1 + PiH
T
i (Ti − Hiβi−1),

(4)

where Hi ≡ G(Xi · α + b). P0 and β0 are computed as
follows.

P0 = (H
T
0 H0)

−1

β0 = P0H
T
0 T0

(5)

Note that OS-ELM and ELM produce the same solution as
long as the training dataset is the same.

Specially, when ki = 1 Eq. (4) can be simplified into

Pi = Pi−1 −
Pi−1h

T
i hiPi−1

1 + hiPi−1h
T
i

βi = βi−1 + Pih
T
i (ti − hiβi−1),

(6)

where hi ≡ G(xi · α + b). Note that xi/ti/hi is a special
case of Xi/Ti/Hi when ki = 1. Equation (6) is more costless
than Eq. (4) in terms of computational complexity since a
costly matrix inverse (I + HiPi−1H

T
i )
−1 has been replaced

with a simple reciprocal operation 1
1+hiPi−1h

T
i

[1]. In this
work we refer to Eq. (6) as “training algorithm” of OS-ELM.
Equation (5) is referred to as “initialization algorithm”.

The prediction algorithm is below.

y = G(x · α + b)β, (7)

where y is a special case of Y when the batch size is equal to
1. We refer to Eq. (7) as “prediction algorithm” of OS-ELM.

2.3 Interval Analysis

To realize an overflow/underflow-free fixed-point design you
need to know the interval of each variable and allocate suf-
ficient integer bits that never cause overflow and underflow.
Existing interval analysis methods for fixed-point design are
categorized into a (1) dynamic method or a (2) static method
[11]. Dynamic methods [12]–[15] often take a simulation-
based approach with tons of test inputs. It is known that
dynamic methods often produce a better result close to the
true interval compared to static methods, although they tend
to take a long time due to exhaustive search and may en-
counter overflow or underflow if unseen inputs are found in
runtime. Static methods [6]–[8], [16], [17], on the other
hand, take a more analytical approach; they often involve
solving equations and deriving upper and lower bounds of
each variable without test inputs. Static methods produce a
more conservative result (i.e. a wider interval) compared to
dynamic methods, although the result is analytically guar-
anteed. In this work we employ a static method for interval
analysis as the goal is to realize an overflow/underflow-free
fixed-point OS-ELM digital circuit with analytical guaran-
tee.
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Interval arithmetic (IA) [18] is one of the oldest static
interval analysismethods. In IA every variable is represented
as an interval [x1, x2] where x1 and x2 are the lower and
upper bounds of the variable. Basic operations {+,−,×} are
defined as follows;

[x1, x2] + [y1, y2] = [x1 + y1, x2 + y2]

[x1, x2] − [y1, y2] = [x1 − y2, x2 − y1]

[x1, x2] × [y1, y2] = [

min(x1y1, x1y2, x2y1, x2y2),

max(x1y1, x1y2, x2y1, x2y2)]

(8)

IA guarantees intermediate intervals as long as input inter-
vals are known. However, IA suffers from the dependency
problem; for example, x − x where x ∈ [x1, x2] (x1 < x2)
should be 0 in ordinary algebra, although the result in IA
is [x1 − x2, x2 − x1], a wider interval than the true tightest
range [0,0], which makes subsequent intervals get wider and
wider. The cause of this problem is that IA ignores cor-
relation of variables; x − x is treated a self-subtraction in
ordinary algebra but it is regarded as a subtraction between
independent intervals in IA.

Affine arithmetic (AA) [9] is a refinement of IA pro-
posed by Stolfi et al. AA keeps track of correlation of vari-
ables and is known to obtain tighter bounds close to the
true range compared to IA. AA has been applied into a lot
of fixed-point/floating-point bit-width optimization systems
[6], [16], [19], [20] and still widely used in recent works
[17], [21], [22]. We use AA throughout this work.

2.4 Affine Arithmetic

In AA the interval of variable x is represented in an affine
form x̂ given by;

x̂ = x0 + x1ε1 + x2ε2 + · · · + xnεn, (9)

where εi ∈ [−1,1]. xi is a coefficient and εi is an uncer-
tainty variable which takes [−1,1]; an affine form is a linear
combination of uncertainty variables.

The interval of x̂ can be computed as below.

interval(x̂) = [inf(x̂), sup(x̂)]

inf(x̂) = x0 −
∑
i

|xi |

sup(x̂) = x0 +
∑
i

|xi |

(10)

inf(x̂) computes the lower bound of x̂ and sup(x̂) is the
upper bound. Conversely a variable that ranges [a, b] can be
converted into an affine form x̂ = x0 + x1ε1 with

x0 =
b + a

2
, x1 =

b − a
2

. (11)

Addition/subtraction between affine forms x̂ and ŷ is
simply defined as x̂± ŷ = (x0±y0)+

∑
i (xi ± yi)εi . However,

multiplication x̂ ∗ ŷ is a little bit complicated.

Fig. 2 simple tutorial of AA. In AA all input intervals (a, b, c in this
tutorial) must be known. Affine forms of a, b, c, d, e, f are computed as
follows; â = 0.5 + 4.5εa , b̂ = 3.0 + εb , ĉ = 4.0, d̂ = 3.5 + 4.5εa + εb ,
ê = −1.0 + εb , f̂ = −3.5 − 4.5εa + 2.5εb + 5.5ε f . We can derive
interval(d̂) = [−2.0, 9.0], interval(ê) = [−2.0, 0.0], and interval( f̂ ) =
[−16.0, 9.0] from Eq. (10).

x̂ ∗ ŷ = x0y0 +
∑
i

(x0yi + y0xi)εi +Q

Q =
∑
i

(xiεi)
∑
i

(yiεi)
(12)

Note that Q is not an affine form (i.e. Q is not a linear
combination of εi) and it needs approximation to become an
affine form. A conservative approximation shown below is
often taken [6], [16], [17].

Q ≈ uvε∗, u =
∑
i

|xi |, v =
∑
i

|yi |, (13)

where ε∗ ∈ [−1,1] is a new uncertainty variable. Note that
uvε∗ ≥

∑
i (xiεi)

∑
i (yiεi). See Fig. 2 for a simple tutorial of

AA.
Division ẑ = x̂

ŷ is often separated into x̂ ∗ 1
ŷ . There are

mainly two approximation methods to compute 1
ŷ : (1) the

min-max approximation and (2) the chebyshev approxima-
tion. Here we show the definition of 1

ŷ with the min-max
approximation.

p =

{
− 1

b2 (if b > a > 0)
− 1

a2 (if 0 > b > a)

q =
(a + b)2

2ab2 , d =
(a − b)2

2ab2

1
ŷ
= (p · y0 + q) +

∑
i

p · (yiεi) + dε∗,

(14)

where a = inf(ŷ) and b = sup(ŷ). Note that 1
ŷ is defined

only if b > a > 0 or 0 > b > a. The denominator ŷ must
not include zero.

2.5 Determination of Integer Bit-Width

Suppose we have an affine form x̂, the minimum number
of integer bits that never cause overflow and underflow is
computed by;

IB = dlog2(max(|inf(x̂)|, |sup(x̂)|) + 1) + α,

α =

{
1 (if signed)
0 else.

(15)

IB represents the optimal integer bit-width.
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Fig. 3 Computation graphs for OS-ELM. N represents the total number
of training steps.

Algorithm 1 T(xi, ti,α, b,Pi−1, βi−1) 7→ {Pi, βi} (1 ≤ i ≤
N).
Require: xi , ti ,α, b, Pi−1, βi−1
Ensure: hi = xi · α + b,

Pi = Pi−1 −
Pi−1h

T
i
hiPi−1

1+hiPi−1h
T
i

,

βi = βi−1 + Pih
T
i (ti − hiβi−1)

1: ei ← xi · α
2: hi ← ei + b

3: γ(1)i ← Pi−1 · h
T
i

4: γ(2)i ← hi · Pi−1

5: γ(3)i ← γ(1)i ·γ
(3)
i

6: γ(4)i ← γ(2)i · h
T
i

7: γ(5)i ← γ
(4)
i + 1

8: γ(6)i ← γ(3)i /γ
(5)
i

9: Pi ← Pi −γ
(6)
i

10: γ(7)i ← Pi · h
T
i

11: γ(8)i ← hi · βi−1

12: γ(9)i ← ti −γ
(8)
i

13: γ(10)
i ← γ(7)i ·γ

(9)
i

14: βi ← βi−1 +γ
(10)
i

15: return {Pi , βi }

3. AA-Based Interval Analysis for OS-ELM

In this section we propose the AA-based interval analysis
method for OS-ELM. The process is two-fold: 1O Build the
computation graph equivalent to OS-ELM. 2O Compute the
affine form and interval for every variable existing in OS-
ELM, using Eq. (10). Figure 3 shows computation graphs
for OS-ELM. “Training graph” corresponds to the training
algorithm (Eq. (6)), and “prediction graph” corresponds to
the prediction algorithm (Eq. (7)).

T(xi, ti,α, b,Pi−1, βi−1) 7→ {Pi, βi} defined in Al-
gorithm 1 represents a sub-graph that computes a sin-
gle iteration of the OS-ELM training algorithm. Train-
ing graph concatenates N sub-graphs, where N is the
total number of training steps. Training graph takes
{x1, . . . , xN , t1, . . . , tN ,α, b,P0, β0} as input and outputs
{PN , βN }. P(x,α, b, β) 7→ y defined in Algorithm 2 rep-
resents prediction graph. Prediction graph takes {x,α, b, β}
as input and outputs y .

The goal is to obtain the intervals of {γ(1)i , . . . ,γ(10)
i , Pi ,

βi , ei,hi} (1 ≤ i ≤ N) for training graph and {e,h, y} for

Algorithm 2 P(x,α, b, β) 7→ y
Require: x,α, b, β
Ensure: y = (x · α + b)β
1: e ← x · α
2: h ← e + b
3: y ← h · β
4: return y

prediction graph, through AA. In this paper, the interval of
a matrix A ∈ Ru×v is computed as follows.

interval(Â) = [inf(Â), sup(Â)]

inf(Â) = min(inf(Â[0,0]), . . . , inf(Â[u−1,v−1]))

sup(Â) = max(sup(Â[0,0]), . . . , sup(Â[u−1,v−1])),

(16)

where Â is the affine form of A, and Â[i, j] is the i j element
of Â.

3.1 Constraints

Remember that all input intervals must be known in AA; in
other words the intervals of {x1, . . . , xN , t1, . . . , tN , α, b, P0,
β0} for training graph and {x,α, b, β} for prediction graph
must be given. In this work we assume that the intervals
of {x, x1, . . . , xN , t1, . . . , tN } are [0,1], and those of {α, b}
are [−1,1]. {P0, β0} is computed by Eq. (5). The interval
of β (an input of prediction graph) is computed in the way
described in Sect. 3.3.

3.2 Interval Analysis for Training Graph

The goal of training graph is to find the intervals of
{γ(1)i , . . . ,γ(10)

i , Pi , βi , ei,hi} for 1 ≤ i ≤ N , however,
we have to deal with a critical problem; OS-ELM is an on-
line learning algorithm and the total number of training steps
N is unknown as training may occur in runtime (i.e. N can
increase in runtime). if N is unknown, the training graph
grows endlessly and interval analysis becomes infeasible.
We need to determine a “reasonable” value of N for training
graph.

3.2.1 Determination of N

To determine N , we conducted an experiment to analyze the
intervals of {γ(1)i , . . . ,γ(10)

i , Pi , βi , ei,hi} for 1 ≤ i ≤ N . The
procedure is as follows: 1O Implement OS-ELM’s initializa-
tion and training algorithms in double-precision format. 2O
Compute initialization algorithm using initial training sam-
ples of Digits [23] dataset (see Table 1 for details). {P0, β0}
is obtained. 3O Compute training algorithm by one step us-
ing online training samples. {Pk, βk} is obtained if i = k.
4O Generate 1,000 random training samples {x, t} with uni-
form distribution of [0, 1]. Feed all the random samples into
training algorithm of step = k andmeasure themaximum and
minimum values for each of {γ(1)

k
, . . . ,γ(10)

k
, Pk , βk , ek,hk}.
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Fig. 4 Observed intervals of {γ(1)i , . . . ,γ(10)
i , Pi , βi , ei , hi } (1 ≤ i ≤ N = 1, 079) on Digits

dataset. The x-axis represents the training step i, and the y-axis plots the observed intervals (the
maximum and minimum values) of each variable at training step i.

Table 1 Classification datasets used in Sect. 5. “Initial training samples’ refers to the training samples
used for computing {β0, P0 }. “Online training samples” are the training samples for computing
{βi , Pi } (i ≥ 1). “Test samples” are used to evaluate test accuracy and determine the number of hidden
nodes. “Features” is the number of dimension of input x. “Classes” corresponds to the number of output
classes (= the number of dimension of output y and target t). “Model size” column shows the model size
{n, Ñ ,m} for each dataset, where n, Ñ , or m represents the number of input, hidden, or output nodes.

Name Initial training samples Online training samples Test samples Features Classes Model size
Digits [23] 358 1,079 360 64 10 {64, 48, 10}
Iris [24] 30 90 30 4 3 {4, 5, 3}

Letter [25] 4,000 12,000 4,000 16 26 {16, 32, 26}
Credit [26] 6,000 18,000 6,000 23 2 {23, 16, 2}
Drive [27] 11,701 35,106 11,702 48 11 {48, 64, 11}

5O Iterate 3-4 until all online training samples run out.
Figure 4 shows the result. We observed that all

the intervals gradually converged or kept constant as i
proceeds. Similar outcomes were observed on other
datasets too (see Sect. 5.3 for the entire result on multi-
ple datasets). From these outcomes, we make a hypothe-
sis that Ai ∈ {γ

(1)
i , . . . ,γ(10)

i , Pi , βi , ei,hi} roughly satis-
fies [min(A1),max(A1)] ⊇ [min(Ai),max(Ai)] for 2 ≤ i,
in other words, the interval of A1 can be used as those of
A1, . . . , AN . This hypothesis is verified in Sect. 5.3, using
multiple datasets.

Based on the hypothesis we set N = 1 in training graph.
The interval analysis method for training graph is summa-
rized as follows.

1. Build training graph T(x0, t0,α, b,P0, β0) 7→ {P1, β1}.
2. Compute {γ̂(1)1 , . . . , γ̂(10)

1 , P̂1, β̂1, ê1, ĥ1} using AA.
The intervals are used as those of {γ(1)i , . . . ,γ(10)

i , Pi ,
βi , ei,hi} (i ≥ 1).

3.2.2 Division

OS-ELM’s training algorithmhas a division Pi−1h
T
i hiPi−1

1+hiPi−1h
T
i

. As

mentioned in Sect. 2.4, the denominator γ(5)i = 1+hiPi−1h
T
i

must not take zero. In the rest of this section 0 < γ(5)i is
proven for i ≥ 1.

Theorem 1. Pi−1 is positive-definite for i ≥ 1.

Proof. We first prove that P0 is positive-definite.

• P−1
0 is positive-semidefinite due to uP−1

0 uT =

uHT
0 H0u

T = (uHT
0 ) · (uH

T
0 )

T ≥ 0, where u ∈ R1×Ñ

represents an arbitrary vector.
• P−1

0 = HT
0 H0 is positive-definite since HT

0 H0 is as-
sumed to be a regular matrix in OS-ELM.

• P0 is positive-definite since the inverse of a positive-
definite matrix is positive-definite.

Next, we prove that P1 is positive-definite. Equation (17)
is derived by applying the sherman-morrison formula† to
Eq. (6).

Pi = (P
−1
i−1 + hTi hi)

−1 (17)

• P1 = (P
−1
0 + hT1 h1)

−1 holds by substituting i = 1.
• hT1 h1 is positive-semidefinite due to uhT1 h1u

T =

(uhT1 ) · (uh
T
1 )

T ≥ 0.
• P−1

1 = (P
−1
0 + hT1 h1) is positive-definite since it is the

sum of a positive-definite matrix P−1
0 and a positive-

semidefinite matrix hT1 h1.
• P1 is positive-definite since it is the inverse of a positive-
definite matrix P−1

1 .

By repeating the above logic, P0, . . . ,Pi−1 (i ≥ 1) are all
positive-definite. �

Theorem 2. hiPi−1h
T
i > 0 for i ≥ 1.

Proof. An n × n positive-definite matrix V ∈ Rn×n satisfies
the following inequality.

uVuT > 0, (18)

where u ∈ R1×n represents an arbitrary vector. By applying

†(V+uT w)−1 = V−1−V−1uTwV−1

1+wV−1uT (V ∈ Rk×k, u ∈ R1×k,w ∈

R1×k , k ∈ N).
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this to hiPi−1h
T
i , hiPi−1h

T
i > 0 holds for i ≥ 1, which

guarantees 0 < 1 + hiPi−1h
T
i ⇔ 0 < γ(5)i for i ≥ 1. �

Note that interval(γ̂(5)i ) can include zero because
interval(γ̂(5)i ) can be wider than the true interval of γ(5)i . To
tackle this problem we propose to compute min(1, inf(γ̂(5)i ))

for the lower bound of γ̂(5)i instead of inf(γ̂(5)i ). This trick

prevents ˆ
γ
(5)
i from including zero and at the same timemakes

the interval close to the true interval. Thanks to this trick
OS-ELM’s training algorithm can be safely represented in
AA.

3.3 Interval Analysis for Prediction Graph

Prediction graph takes {x, β} as input. The interval of
β should be that of βi over 0 ≤ i ≤ N , more specif-
ically, 0 ≤ i ≤ 1 (N = 1). We propose to compute
min(inf(β̂0[u,v]), inf(β̂1[u,v])) for the lower bound of β[u,v]
andmax(sup(β̂0[u,v]), sup(β̂1[u,v])) as the upper bound, where
β[u,v] represents the uv element of β.

4. OS-ELM Core

We developed OS-ELM Core, a fixed-point IP core that im-
plements OS-ELM algorithms, to verify the proposed inter-
val analysis method. All integer bit-widths of OS-ELMCore
are parametrized, and the result of proposed interval analy-
sis method is used as the arguments. The PYNQ-Z1 FPGA
board [28] (280 BRAM blocks, 220 DSP slices, 106,400
flip-flops, and 53,200 LUT instances) is employed as the
evaluation platform.

Figure 5 shows the block diagram of OS-ELM Core.
OS-ELM Core employs axi-stream protocol for input/output
interface with 64-bit data width. Training module executes
OS-ELM’s training algorithm then updates P and β man-
aged in parameter buffer. Prediction module reads an input
x from input buffer and executes prediction algorithm. The
output of prediction module y is buffered in output buffer.
Both training and prediction modules use one adder and one
multiplier in a matrix product operation, and one arithmetic
unit (i.e. adder, multiplier, or divisor) in a element-wise op-
eration, regardless of the size of matrix, to make hardware
resource cost as small as possible. All the arrays exist-
ing in OS-ELM Core are implemented with BRAM blocks
(18 kb/block), and all the fixed-point arithmetic units (i.e.
adder, multiplier, and divisor) are with DSP slices.

5. Evaluation

In this section we evaluate the proposed interval analysis
method. All the experiments here were executed on a server
machine (Ubuntu 20.04, Intel Xeon E5-1650 3.60GHz,
DRAM 64GB, SSD 500GB). Table 1 lists the classifica-
tion datasets used for evaluation of our method. For all the
datasets, the intervals of input x and target t are normalized

Fig. 5 Block diagram of OS-ELM Core.

into [0,1]. Parameters b and α are randomly generated with
the uniform distribution of [−1,1]. The model size for each
dataset is shown in “Model Size” column. The number of
hidden nodes is set to the number that performed the best test
accuracy in a given search space; search spaces for Digits,
Iris, Letter, Credit, and Drive are {32, 48, 64, 96, 128}, {3,
4, 5, 6, 7}, {8, 16, 32, 64, 128}, {4, 8, 16, 32, 64}, and {32,
64, 96, 128} respectively.

5.1 Optimization Result

In this section we first show the result of the proposed in-
terval analysis method for each dataset, comparing with an
ordinary simulation-based interval analysis method. Here
is a brief introduction of the simulation method: 1O Im-
plement OS-ELM’s initialization, prediction, and training
algorithms in double-precision format. 2O Execute initial-
ization algorithm using initial training samples. {P0, β0} is
obtained. 3O Execute training algorithm by one step using
online training samples. {Pk, βk} is obtained if i = k. 4O
Generate 1,000 random training samples {x, t} with uniform
distribution of [0,1]. 5O Feed all the random samples into
training algorithm of step = k and measure the values of
{γ(1)

k
, . . . ,γ(10)

k
,Pk, βk, ek,hk}. 6O Feed all the random sam-

ples into prediction algorithm and measure the values of y .
7O Repeat 3-6 until all online training samples run out.

Table 2 shows the intervals obtained from the simu-
lation method (sim) and those from the proposed method
(ours). All the intervals obtained from our method cover the
corresponding simulated interval. Note that the simulated
interval of γ(5)i = 1 + hiPi−1h

T
i satisfies γ(5)i > 1, which is

consistent with the theorem proven in Sect. 3.2.2.

5.2 Rate of Overflow/Underflows

This section compares the simulation method introduced
in Sect. 5.1 and the proposed method in terms of the rate
of overflow/underflows, using OS-ELM Core. The experi-
mental procedure is as follows: 1O Execute the simulation
method and convert the result into integer bit-widths using
Eq. (15) (an extra bit was added to each bit-width to reduce
overflow/underflows). 2O Execute the proposed method and
convert the result into bit-widths. 3O Synthesize two OS-
ELM Cores using the bit-widths obtained from 1 and 2. 4O
Execute training by one step in both OS-ELM Cores using
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Table 2 Intervals obtained from simulation (sim) and the proposed interval analysis method (ours)
for each dataset.

γ(1)i γ(2)i γ(3)i γ(4)i γ(5)i
Digits (sim) [−0.642, 0.694] [−0.642, 0.694] [−0.446, 0.482] [0.371, 9.75] [1.37, 10.7]
Digits (ours) [−9.92e3 , 9.91e3] [−9.26, 9.69] [−24.5, 27.8] [0.0, 1.46e3] [1.0, 1.46e3]

Iris (sim) [−5.94, 5.85] [−5.94, 5.85] [−4.89, 35.3] [9.27e−3 , 3.24] [1.01, 4.24]
Iris (ours) [−1.55e3 , 1.55e3] [−63.5, 19.1] [−388, 388] [0.0, 48.0] [1.0, 41.7]
Letter (sim) [−6.72e−3 , 7.54e−3] [−6.72e−3 , 7.54e−3] [−5.06e−5 , 5.68e−5] [2.79e−3 , 0.0397] [1.0, 1.04]
Letter (ours) [−0.301, 0.307] [−0.0593, 0.0785] [−2.42e−3 , 2.44e−3] [0.0, 3.49] [1.0, 4.49]
Credit (sim) [−0.115, 0.116] [−0.115, 0.116] [−8.36e−3 , 0.0135] [5.89e−3 , 0.253] [1.01, 1.25]
Credit (ours) [−32.9, 32.9] [−2.22, 3.25] [−0.589, 0.589] [0.0, 32.4] [1.0, 33.4]
Drive (sim) [−6.97e5 , 6.92e5] [−6.98e5 , 6.92e5] [−3.71e11 , 4.87e11] [5.26e4 , 4.72e6] [5.26e4 , 4.72e6]
Drive (ours) [−6.56e15 , 6.56e15] [−1.33e7 , 1.56e7] [−1.4e13 , 1.4e13] [0.0, 1.55e9] [1.0, 1.55e9]

γ(6)i γ(7)i γ(8)i γ(9)i γ(10)
i

Digits (sim) [−0.0447, 0.0472] [−0.102, 0.109] [−3.25, 3.29] [−3.0, 3.94] [−0.291, 0.306]
Digits (ours) [−25.8, 27.8] [−9.92e3 , 9.91e3] [−12.1, 15.4] [−8.38, 9.0] [−8.93e4 , 8.93e4]
Iris (sim) [−1.32, 8.32] [−1.68, 1.67] [−1.24, 1.69] [−1.5, 2.12] [−2.1, 2.77]
Iris (ours) [−397, 397] [−1.55e3 , 1.55e3] [−2.61, 2.3] [−2.3, 2.84] [−4.4e3 , 4.4e3]

Letter (sim) [−4.87e−5 , 5.46e−5] [−6.47e−3 , 7.25e−3] [−1.29, 1.03] [−0.869, 2.21] [−0.0104, 0.0129]
Letter (ours) [−2.84e−3 , 2.86e−3] [−0.301, 0.307] [−3.11, 2.02] [−1.87, 3.31] [−1.01, 1.01]
Credit (sim) [−7.11e−3 , 0.0115] [−0.0994, 0.0989] [−2.19, 3.9] [−3.89, 3.03] [−0.314, 0.245]
Credit (ours) [−0.606, 0.606] [−32.9, 32.9] [−11.5, 10.7] [−6.25, 5.62] [−206, 206]
Drive (sim) [−1.36e5 , 1.65e5] [−1.55, 1.39] [−962, 1.01e3] [−1.01e3 , 970] [−345, 308]
Drive (ours) [−1.4e13 , 1.4e13] [−6.56e15 , 6.56e15] [−1e4 , 8.36e3] [−3.42e3 , 3.44e3] [−2.26e19 , 2.26e19]

Pi βi ei hi y
Digits (sim) [−0.0544, 0.0705] [−0.351, 0.451] [−10.6, 9.15] [−10.0, 9.19] [−3.16, 3.25]
Digits (ours) [−27.4, 26.2] [−8.93e4 , 8.93e4] [−23.1, 20.1] [−22.5, 20.8] [−3.39e7 , 3.39e7]
Iris (sim) [−1.72, 11.4] [−3.44, 5.32] [−2.44, 1.41] [−3.0, 2.21] [−1.23, 1.79]
Iris (ours) [−358, 435] [−4.4e3 , 4.4e3] [−2.53, 1.58] [−3.1, 2.38] [−1.71e4 , 1.71e4]

Letter (sim) [−1.66e−3 , 2.45e−3] [−0.34, 0.294] [−4.6, 5.33] [−4.86, 6.01] [−1.25, 1.18]
Letter (ours) [−9.2e−3 , 0.0126] [−1.35, 0.99] [−6.6, 7.8] [−6.87, 8.48] [−95.7, 95.3]
Credit (sim) [−0.0649, 0.115] [−1.83, 1.38] [−4.66, 5.5] [−5.55, 6.22] [−2.18, 3.77]
Credit (ours) [−0.625, 1.05] [−204, 208] [−8.29, 9.66] [−9.19, 10.4] [−1.09e4 , 1.09e4]

Drive (sim) [−1.4e5 , 1.7e5] [−317, 318] [−9.9, 7.42] [−9.35, 8.29] [−1.21e3 , 318]
Drive (ours) [−1.4e13 , 1.4e13] [−2.26e19 , 2.26e19] [−18.3, 16.8] [−17.7, 16.0] [−1.06e22 , 1.06e22]

Table 3 The “Ops” column shows the total number of arithmetic opera-
tions, and the “Overflow/Underflow” column shows the number of overflow
or underflows that happened during the experiment. The rate of over-
flow/underflows is written in ().

Ops Overflow/Underflow
Digits (sim) 5,512,688,688 0
Digits (ours) 0
Iris (sim) 4,714,041 197,342 (4.19%)
Iris (ours) 0
Letter (sim) 17,793,216,000 0
Letter (ours) 0
Credit (sim) 11,039,328,000 0
Credit (ours) 0
Drive (sim) 187,259,827,356 5,467,945,469 (2.92%)
Drive (ours) 0

online training samples. 5O Generate 250 random training
samples {x, t} with uniform distribution of [0,1]. 6O Feed all
the random samples into the training module and the predic-
tion module for each OS-ELM Core and check the number
of overflow/underflows that arose. 7O Repeat 4-6 until all
online training samples run out.

The result is shown in Table 3. The simulation method
caused no overflow or underflows in three datasets out of
five, however, it suffered from as many overflow/underflows
as 2.92 ∼ 4.19% in the other two datasets, where a few
overflow/underflows arose in an early training step and were
propagated to subsequent steps, resulting in a drastic increase
in overflow/underflows. This cannot be perfectly prevented
as long as a random exploration is taken in interval analysis.

The proposedmethod, on the other hand, encountered totally
no overflow or underflows as it analytically derives upper and
lower bounds of variables and computes sufficient bit-widths
where no overflow or underflows can happen. Although
the proposed method produces some redundant bits and it
results in a larger area size (see Sect. 5.4), it safely realizes
an overflow/underflow-free fixed-point OS-ELM circuit.

5.3 Verification of Hypothesis

Figure 6 shows the entire result of the experiment de-
scribed in Sect. 3.2.1. We observed similar outcomes to
Figure 4 for all the datasets, which supports our hypothesis
that Ai ∈ {γ

(1)
i , . . . ,γ(10)

i , Pi , βi , ei,hi} roughly satisfies
[min(A1),max(A1)] ⊇ [min(Ai),max(Ai)] for 2 ≤ i.

In iterative learning algorithms it is known that learn-
ing parameters (βi and Pi in the case of OS-ELM) grad-
ually converge to some values as training proceeds. We
consider that this numerical property resulted in the con-
vergence of the dynamic ranges of βi and Pi as observed in
Fig. 6, then it tightened the dynamic ranges of other variables
(e.g. γ(1)i , . . . ,γ(10)

i ) too, as a side-effect via enormous num-
ber of multiplications existing in the OS-ELM algorithm.
We plan to investigate the hypothesis either by deriving an
analytical proof or using a larger dataset in the future work.

5.4 Area Cost

In this section the proposed method is evaluated in terms
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Fig. 6 Observed intervals of {γ(1)i , . . . ,γ(10)
i , Pi , βi , ei , hi } on Iris (top row), Letter (2nd row),

Credit (3rd row), and Drive (bottom row), respectively.

Fig. 7 Comparison of area cost. The green bar represents the BRAM
utilization of our method and the brown bar is of the simulation method.

of area cost. We refer to BRAM utilization of OS-ELM
Core as “area cost”, considering that all the arrays in OS-
ELM Core are implemented with BRAM blocks (i.e. the
bottleneck of area cost is BRAM utilization). The proposed

Table 4 Notation rules in this paper.

Notation Description
x (italic) Scaler.

x̂ Affine form of x.
x (bold italic) Vector or matrix.

x̂
Affine form of x

(see Eq. (16) for details).
x[u , v] uv element of x.
x̂[u , v] Affine form for the uv element of x.

f (upright) Function (e.g. G, sup, inf, interval).

method is compared with the simulation method introduced
in Sect. 5.1 to clarify how much additional area cost arises
to guarantee OS-ELM Core being overflow/underflow-free.
The experimental procedure is as follows: 1O Convert the
simulation result into integer bit-widths using Eq. (15) and
synthesize OS-ELM Core with the optimized bit-widths. 2O
Execute the proposed interval analysis method. Convert
the result into integer bit-widths and synthesize OS-ELM
Core. 3O Check the BRAM utilizations of our method and
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Table 5 Description of variables that appear in this paper. The characters used for these variables are
the same as the ones used in [2].

Variable Description
n, Ñ ,m ∈ N Number of input, hidden, or output nodes of OS-ELM.
α ∈ Rn×Ñ Non-trainable weight matrix connecting the input and hidden layers, which is initialized with random values.
β ∈ RÑ×m Trainable weight matrix connecting the hidden and output layers.
P ∈ RÑ×Ñ Trainable intermediate weight matrix for training β.
b ∈ R1×Ñ Non-trainable bias vector of the hidden layer, which is initialized with random values.

G Activation function applied to the hidden layer output.
x ∈ R1×n Input vector.
t ∈ R1×m Target vector.
y ∈ R1×m Output vector.
h ∈ R1×Ñ Output vector of the hidden layer (after activation).
e ∈ R1×Ñ Output vector of the hidden layer (before activation).
X ∈ Rk×n Input matrix of batch size = k (k ∈ N).
T ∈ Rk×m Target matrix of batch size = k.
Y ∈ Rk×m Output matrix of batch size = k.
H ∈ Rk×Ñ Output matrix of the hidden layer with batch size = k (after activation).

γ(1) , . . . ,γ(10) Intermediate variables that appear in OS-ELM’s training algorithm.

the simulation method. 4O Repeat 1-3 for all the datasets.
The experimental result is shown in Fig. 7. Our method

requires 1.0x - 1.5x more BRAM blocks to guarantee that
OS-ELM Core never encounter overflow and underflow,
compared to the simulation method.

Remember that a multiplication in AA causes overes-
timation of interval; there should be a strong correlation
between the additional area cost (i.e. simulation - ours) and
the number of multiplications in OS-ELM’s training and
prediction algorithms.

M(n, Ñ,m) = 4Ñ2 + (3m + n + 1)Ñ (19)

M(n, Ñ,m) calculates the total number of multiplications in
OS-ELM’s training and prediction algorithms, where n, Ñ ,
or m is the number of input, hidden, or output nodes, respec-
tively. Equation (19) shows that Ñ has the largest impact on
additional area cost, which is consistent with the result that
2.0x more additional area cost was observed in Drive com-
pared to Digits, with fewer inputs nodes (Drive: 48, Digits:
64), more hidden nodes (Drive: 64, Digits: 48), and almost
the same number of hidden nodes (Drive: 11, Digits: 10).
We conclude that the proposed method is highly effective
especially when the model size is small, and that the number
of hidden nodes has the strongest impact on additional area
cost.

6. Related Work

6.1 Static Interval Analysis for Iterative Algorithms

Existing general-use static interval analysis methods, includ-
ing AA, deal with iterative algorithms by expanding them
into feed-forward computation graphs using loop unrolling
[7]–[9], [18]. There must be a termination condition for
the target iterative algorithm to apply loop unrolling; other-
wise it cannot be represented in a feed-forward computation
graph and interval analysis becomes infeasible. OS-ELM’s
training algorithm has no termination condition and existing
methods alone cannot realize interval analysis for OS-ELM.

Kinsman et al. proposed an SMT (satisfiability mod-
ulo theory) based static interval analysis framework de-
signed for iterative algorithms [29] and demonstrated that
the method worked for famous iterative algorithms, newton-
raphson method and conjugate gradient method, however, it
still cannot handle algorithms that do not have termination
conditions like OS-ELM. Several papers [30]–[34] proposed
analytical interval analysis methods for LTI (linear time in-
variant) circuits with feedback loops which cannot be trans-
lated into feed-forward computation graphs, but the methods
are dedicated to LTI circuits and not for OS-ELM. As far as
we know this paper is the first work to realize a static interval
analysis for OS-ELM by leveraging a numerical property of
OS-ELM we pointed out in Sect. 3.2.1.

6.2 Division on Static Interval Analysis

Most of static interval analysis methods assume that all
denominators within a target algorithm do not take zero
[8], [9], [18], or interval analysis becomes infeasible. SMT-
based methods proposed by Kinsman et al. provide a mitiga-
tion solution to handle a denominator that can take zero by
forcibly adding a numerical constraint that prevents it from
taking zero (e.g. y ≥ 0.01 for z = x

y ), however, the constraint
y ≥ 0.01 is inconsistent with the fact 0 ∈ y, which can lead
to overestimation or underestimation in subsequent intervals.

We took the safest strategy; we analytically proved that
the denominator γ(5)i = 1 + hiPi−1h

T
i of OS-ELM does not

take zero at any i ≥ 1, and proposed a mathematical trick
based on the proof to safely represent OS-ELM in AA. Note
that the contributions can apply to not only AA but also other
static interval analysis methods.

7. Conclusion

In this paper we proposed an overflow/underflow-free bit-
width optimization method for fixed-point OS-ELM digital
circuits. In the proposed method affine arithmetic is used to
estimate the intervals of intermediate variables and compute
the optimal number of integer bits that never cause overflow
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and underflow. We clarified two critical problems in realiz-
ing the proposed method: (1) OS-ELM’s training algorithm
is an iterative algorithm and the computation graph grows
endlessly, which makes interval analysis infeasible in affine
arithmetic. (2) OS-ELM’s training algorithm has a division
operation and if the denominator can take zero OS-ELM can
not be represented in affine arithmetic.

We proposed an empirical solution to prevent the com-
putation graph from growing endlessly, based on simulation
results. We also analytically proved that the denominator
does not take zero at any training step, and proposed a math-
ematical trick based of the proof to safely represent OS-
ELM in affine arithmetic. Experimental results confirmed
that no underflow/overflow occurred in our method on mul-
tiple datasets. Our method realized overflow/underflow-free
OS-ELM digital circuits with 1.0x - 1.5x more area cost
compared to the baseline simulation method where overflow
or underflow can happen.
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