
An FPGA-Based On-Device Reinforcement Learning
Approach using Online Sequential Learning

Hirohisa Watanabe∗, Mineto Tsukada∗, Hiroki Matsutani∗
∗Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522

Email: {watanabe,tsukada,matutani}@arc.ics.keio.ac.jp

Abstract—DQN (Deep Q-Network) is a method to perform
Q-learning for reinforcement learning using deep neural net-
works. DQNs require a large buffer and batch processing for
an experience replay and rely on a backpropagation based
iterative optimization, making them difficult to be implemented
on resource-limited edge devices. In this paper, we propose a
lightweight on-device reinforcement learning approach for low-
cost FPGA devices. It exploits a recently proposed neural-network
based on-device learning approach that does not rely on the
backpropagation method but uses OS-ELM (Online Sequential
Extreme Learning Machine) based training algorithm. In addi-
tion, we propose a combination of L2 regularization and spectral
normalization for the on-device reinforcement learning so that
output values of the neural network can be fit into a certain range
and the reinforcement learning becomes stable. The proposed
reinforcement learning approach is designed for PYNQ-Z1 board
as a low-cost FPGA platform. The evaluation results using OpenAI
Gym demonstrate that the proposed algorithm and its FPGA
implementation complete a CartPole-v0 task 29.77x and 89.40x
faster than a conventional DQN-based approach when the number
of hidden-layer nodes is 64.

I. INTRODUCTION

Reinforcement learning differs from a typical deep learning
in that agents themselves explore their environment and learn
appropriate actions. This means that it learns correct actions
while creating a dataset. In DQN (Deep Q-Network) [1], Q-
learning for reinforcement learning is replaced with deep neural
networks so that it can acquire a high generalization capability
by the deep neural networks. In this case, continuous input
values can be used as inputs. Also, to reduce a dependence
on a sequence of input data, an experience replay technique
[2], in which past experiences including states, actions, and
rewards are recorded in a buffer and then randomly picked up
for training, is typically used for DQNs. However, such DQNs
are costly for resource-limited edge devices and a standalone
execution on edge devices is not feasible, because they rely
on a backpropagation based training algorithm that iteratively
optimizes their weight parameters and the convergence is
sometimes time-consuming.

In this paper, we propose a lightweight on-device reinforce-
ment learning approach for resource-limited FPGA devices. It
exploits a recently proposed neural-network based on-device
learning approach [3] that does not rely on the backpropa-
gation methods but uses OS-ELM (Online Sequential Extreme
Learning Machine) based training algorithm [4]. Computational
cost for this training algorithm is quite low, because its weight
parameters are analytically solved in a one-shot manner without
the backpropagation based iterative optimization. In theory,

it has been demonstrated that it can satisfy the universal
approximation theorem [5] as in deep learning.

However, since the training algorithm of OS-ELM assumes
single hidden-layer neural networks, their output values tend
to be unstable in some cases, e.g., when they are overfit
to some specific inputs and/or when unknown patterns are
fed. In the case of reinforcement learning, one of crucial
issues is that an action acquisition with Q-learning becomes
unstable. To address this issue, this paper proposes a com-
bination of L2 regularization and spectral normalization [6]
so that output values of the proposed OS-ELM Q-Network
can be fit into a certain range and the reinforcement learning
becomes stable. This enables us to implement the reinforcement
learning on small-sized FPGA devices for standalone execution
on resource-limited edge devices. In this paper, the proposed
reinforcement learning approach is designed for PYNQ-Z1
board. The evaluation results using OpenAI Gym show that
the proposed algorithm and its FPGA implementation complete
a CartPole task 29.77x and 89.40x faster than a conventional
DQN when the number of hidden-layer nodes is 64.

The rest of this paper is organized as follows. Section II
introduces basic technologies behind our proposal. Section
III proposes the lightweight on-device reinforcement learning
approach and illustrates an FPGA implementation. In Section
IV, it is evaluated in terms of training curve and execution time
to complete a CartPole task. Section V summarizes this paper.

II. PRELIMINARIES

This section introduces (1) ELM (Extreme Learning Ma-
chine), (2) OS-ELM (Online Sequential ELM), (3) ReOS-ELM
(Regularized OS-ELM), and (4) DQN (Deep Q-Network).

A. ELM
ELM [7] is a batch training algorithm for single hidden-

layer neural networks. In this case, the network consists of
input layer, hidden layer, and output layer (see Figure 1 in a
few pages later). The numbers of their nodes are n, Ñ , and m,
respectively.

Assuming an n-dimensional input chunk x ∈ Rk×n with
batch size k is given, an m-dimensional output chunk y ∈
Rk×m is computed as follows.

y = G(x ·α+ b)β, (1)

where G is an activation function, α ∈ Rn×Ñ is an input
weight matrix between input and hidden layers, β ∈ RÑ×m

is an output weight matrix between hidden and output layers,
and b ∈ RÑ is a bias vector of the hidden layer.



Assuming this neural network approximates an m-
dimensional target chunk (i.e., teacher data) t ∈ Rk×m with
zero error, the following equation is satisfied.

G(x ·α+ b)β = t (2)

Here, the hidden layer matrix is defined as H ≡ G(x ·α+b).
The optimal output weight matrix β̂ is computed as follows.

β̂ = H†t, (3)

where H† is a pseudo inverse matrix of H , which can be
computed with matrix decomposition algorithms, such as SVD
and QRD (QR Decomposition).

In ELM algorithm, the input weight matrix α is initialized
with random values and not changed thereafter. The optimiza-
tion is thus performed only for the output weight matrix β;
thus, it is quite simple compared with backpropagation based
neural networks that optimize both α and β. In addition,
the training algorithm of ELM is not iterative; it analytically
computes the optimal weight matrix β for a given input chunk
in one shot, as shown in Equation 3. That is, it can always
obtain the optimal β in one shot, unlike a typical gradient
descent method that iteratively tunes the parameters toward the
optimal solution.

Please note that ELM is a batch training algorithm and it
becomes costly when the training data size grows sequentially.
This means that, when a new training data arrives, the whole
dataset including the new data must be retrained to update
the model. This issue is a limiting factor for reinforcement
learning, which can be addressed by OS-ELM.

B. OS-ELM
OS-ELM [4] is an online sequential version of ELM, which

can update the model sequentially using an arbitrary batch
size. Assuming that the i-th training chunk {xi ∈ Rki×n, ti ∈
Rki×m} with batch size ki is given, we need to compute an
output weight matrix βi that can minimize the following error.

H0

...
Hi

βi −

t0...
ti




2

, (4)

where Hi is defined as Hi ≡ G(xi ·α+ b).

Assuming Pi ≡


H0

...
Hi


⊤ H0

...
Hi




−1

(i ≥ 0), the optimal

output weight matrix is computed as follows.

Pi = Pi−1 − Pi−1H
⊤
i

(
I +HiPi−1H

⊤
i

)−1
HiPi−1

βi = βi−1 + PiH
⊤
i (ti −Hiβi−1)

(5)

In particular, the initial values P0 and β0 are precomputed
as follows. This computation is called initial training.

P0 =
(
H⊤

0 H0

)−1

β0 = P0H
⊤
0 t0

(6)

As shown in Equation 5, the output weight matrix βi and its
intermediate result Pi are computed from the previous training

results βi−1 and Pi−1. Thus, OS-ELM can sequentially update
the model with a newly-arrived target chunk in one shot, and
there is no need to retrain all the past data unlike ELM.

In this approach, the major bottleneck is the pseudo inverse
operation

(
I +HiPi−1H

⊤
i

)−1
in Equation 5. As proposed

in [3], the batch size k is fixed at 1 in this paper so that the
pseudo inverse operation of k × k matrix for the sequential
training is replaced with a simple reciprocal operation; thus,
we can eliminate SVD or QRD computation from Equation 5.

C. ReOS-ELM

ReOS-ELM [8] is an OS-ELM variant where an L2 regu-
larization is applied to the output weight matrix β so that it
can mitigate an overfitting issue of OS-ELM and improve its
generalization capability. The training algorithm of ReOS-ELM
is same as that of OS-ELM, except that the initial training of
P0 and β0 is changed as follows.

P0 =
(
H⊤

0 H0 + δI
)−1

β0 = P0H
⊤
0 t0,

(7)

where δ is a regularization parameter that controls an impor-
tance of the regularization term.

D. Reinforcement Learning and DQN

In DQNs, deep neural networks are used for Q-learning
which is a typical reinforcement learning algorithm. In time
step t, Qθ1(st, at) represents a value for taking action at in
state st, predicted with a set of neural network parameters θ1.
In this case, θ1 is trained so that the value Qθ1(st, at) can be
predicted accurately by the neural network. However, if θ1 is
trained for each time step t, it is continuously changed and the
Q-learning will not be stable. To address this issue, DQNs use
a fixed target Q-network technique [9], in which another neural
network with a set of parameters θ2 is used for stabilizing the
Q-learning, in addition to that with θ1. More specifically, θ2
is used but fixed for a while, and it is updated with θ1 at a
predefined interval.

In DQNs, an optimization target is computed as follows.

f(rt, st+1, dt) = rt + (1− dt)γmax
a∈A

Qθ2 (st+1, a), (8)

where γ ∈ [0, 1] is a discount rate that controls an importance
of the next step, rt is a current reward given by an environment,
and dt indicates if the current episode 1 is finished or not. If dt
is equal to 1, the current episode is finished and a new episode
is started. As shown in Equation 8, the sum of the reward and
the maximum Q-value among all the possible actions A in one
step ahead is regarded as the optimization target. As mentioned
above, θ2 is periodically updated with θ1 by using the fixed
target Q-network technique. Specifically, the loss value for θ1
is denoted as follows [10].

L(θ1) = E
(st,at,rt,st+1,dt)∼D

[(
Qθ1(st, at)− f(rt, st+1, dt)

)2
]
,

(9)

1In this paper, an episode is defined as a complete sequence of states, actions,
and rewards.



where D is a buffer for the experience replay technique [1],
which is used to suppress impacts of temporal dependence on
input data for training. In this case, past experiences (e.g., st,
at, rt, st+1, and dt in Equation 9) are stored in the buffer D.
Then, they are randomly picked up from the buffer to form a
batch which will be used for updating the weight parameters
of the neural network.

E. Spectral Regularization and Spectral Normalization
To stabilize an action acquisition with Q-learning, we focus

on regularization methods used in deep learning. Specifically,
for reinforcement learning, a range of neural network outputs
should be within a constant multiplication of their input for the
stability. Such a property is referred to as Lipschitz continuity.
More specifically, assuming an input value is changed from x1

to x2, their output values f(x1) and f(x2) should satisfy the
following constraint.

∀x1, x2, ∥f(x1)− f(x2)∥ ≤ K∥x1 − x2∥, (10)

where K ∈ R is a constant value called Lipschitz constant.
Lipschitz constant of a neural network is derived by partial
products of Lipschitz constants of all the layers, each of which
is equal to a product of Lipschitz constant of a weight matrix
(i.e., its largest singular value) and that of an activation function
(i.e., ≤ 1 for ReLU and tanh). It should be suppressed for the
stable Q-learning. A spectral regularization [11] can be used to
suppress the Lipschitz constant of a neural network, in which
the sum of the largest singular value in each weight matrix is
added to the loss function as a penalty term.

In practice, a well-known extension of the spectral regular-
ization is spectral normalization [6], in which an output of a
neural network is computed based on partial products of input
data and each weight matrix divided by its largest singular
value. In this case, the Lipschitz constant is limited to ≤ 1.
Since 1-Lipschitz continuity is required for GANs (Generative
Adversarial Networks), it is widely used in these applications.
In this paper, we use this approach for stabilizing the OS-ELM
based reinforcement learning.

III. ON-DEVICE REINFORCEMENT LEARNING APPROACH

In Q-learning, the value Qθ(st, at) is approximated with a
neural network. Toward the standalone reinforcement learning
on resource-limited edge devices, in this paper we propose to
use OS-ELM for this purpose.

A. Baseline OS-ELM Q-Network
Algorithm 1 shows the proposed OS-ELM Q-Network. It

consists of four states: Determine, Observe, Store, and Update.
• In Determine state (lines 10-13), a current action at is

determined based on the current state st. More specifi-
cally, an action that maximizes the Q-value (line 11) or
randomly-selected one (line 13) is selected as at.

• In Observe state (lines 14-16), based on an interaction
using at with the environment, the next state st+1, reward
rt, and flag dt are observed.

• In Store state (line 17), these observed values, action at,
and state st are stored in buffer D so that they can be
used in Update state.

Algorithm 1: OS-ELM Q-Network
1 Initialize parameters θ1 = {α0,β0} using random

values R ∈ [0, 1]
2 σmax(α0)← SVD(α0)
3 α0 ← α0/σmax(α0) // Initialize α0

4 Initialize parameters θ2 as θ2 ← θ1
5 Initialize buffer D
6 Initialize global step t
7 for episode ∈ 1 . . . do
8 for step ∈ 1 . . . do
9 t← t+ 1

// Determine
10 if random value r1 < ε1 then
11 at ← arg max

a∈A
Qθ1(st, a)

12 else
13 at ← random action value

// Observe
14 Observe (st+1, rt, dt) from environment
15 if dt == 1 then
16 Break

// Store
17 Store (st, at, rt, st+1, dt) in buffer D

// Update
18 if t == Ñ then
19 Retrieve ∀i ∈ [1, Ñ ], (si, ai, ri, si+1, di)

from buffer D
20 Update ∀i ∈ [1, Ñ ], Qθ1(si, ai) to clip(−1,

ri + (1− di)γmaxa∈A Qθ2(si+1, a), 1)
// Initialize βt

21 else if t > Ñ then
22 if random value r2 < ε2 then
23 Update Qθ1(st, at) to clip(−1, rt + (1−

dt)γmaxa∈A Qθ2(st+1, a), 1)
// Update βt

24 if episode%UPDATE STEP == 0 then
25 θ2 ← θ1

• In Update state (lines 18-23), β is initialized or updated,
depending on the global step t. More specifically, it is
initially trained with stored values in D (line 20) based
on Equation 6 when the number of experiences in D is
same as Ñ (i.e., t == Ñ ). Or, it is sequentially updated
with the latest experience (line 23) based on Equation 5
when t > Ñ . The former is referred as an initial training
and the latter is referred as a sequential training.

Please note that the buffer D is used for the initial training
only and it is not used in subsequent sequential training in the
case of OS-ELM Q-Network.

a) Fixed Target Q-Network: OS-ELM Q-Network uses
the fixed target Q-network technique as well as DQNs. At
first, two sets of neural network parameters θ1 and θ2 are
initialized in lines 1 and 4. θ1 is updated more frequently (lines
20 and 23) and θ2 is synchronized with θ1 at a certain interval



Fig. 1. Extreme Learning Machine Fig. 2. Simplified output model (numbers of state variables and actions are 4 and 2 in this example)

(lines 24-25). Please note that a straightforward algorithm that
approximates Q(st, at) with OS-ELM is unstable and cannot
complete a reinforcement learning task in this paper. We thus
introduce some techniques below in order to improve OS-ELM
Q-Network.

b) Simplified Output Model: In DQNs, the i-th node of an
output layer is Q-value of the i-th action, and they are trained
so that the i-th node can predict Q(s, ai) accurately. In this
case, their input and output sizes are equal to the numbers
of state variables and actions, respectively. The left hand side
of Figure 2 shows an example of such a network when the
numbers of state variables and actions are 4 and 2, respectively.
Since an action value is fed to the model in this case, Q-value
is calculated for all the possible actions.

In Update state of DQNs, a loss value computed with
Equations 8 and 9 is used for the backpropagation based
iterative optimization. In OS-ELM, on the other hand, teacher
data t ∈ Rm is required to update β when the batch
size k is 1, as shown in Equation 5. To directly use
(rt + (1− dt) γmaxa∈A Qθ2 (st+1, a)) in Equation 8 to up-
date β, in this paper we employ a simplified output model,
which is illustrated in the right hand side of Figure 2. In this
model, a set of state variables and an action value (e.g., -
0.5 for action a0 and 0.5 for action a1) is given as an input
and its corresponding Q-value is an output, which is scalar
(i.e., m = 1). Thus, (rt + (1− dt) γmaxa∈A Qθ2 (st+1, a))
can be directly used as a teacher data when updating β in the
simplified output model (lines 20 and 23).

c) Q-Value Clipping: OS-ELM Q-Network tends to be
unstable especially when unseen inputs are fed to the network,
and its output values become anomaly in such cases. Such out-
liers hinder the reinforcement learning, because these values are
significantly large and exceed a range of normal reward values.
In a typical setting for the reinforcement learning, the maxi-
mum reward given by the environment is 1 and the minimum
reward is -1. Thus, as shown in lines 20 and 23, output values
of OS-ELM Q-Network are clipped so that they are fit into the
range of −1 ≤ rt +(1− dt)γmaxa∈A Qθ2(st+1, a) ≤ 1. Such
a Q-value clipping suppresses outliers and enables a stable
reinforcement learning with OS-ELM Q-Network.

d) Random Update: DQNs typically train their neural
network parameters in a batch manner and use the experience
replay technique to form a batch randomly so that it can

mitigate a dependence on a sequence of input data. On the
other hand, OS-ELM is a sequential training algorithm that
can update its neural network parameters sequentially with a
small batch size k. As mentioned in Section II-B, the major
bottleneck of OS-ELM when implemented for resource-limited
FPGA devices is the pseudo inverse matrix operation that may
require an SVD or QRD core. In [3], the pseudo inverse matrix
operation is eliminated by fixing k to 1 for enabling the neural
network based on-device learning. In this paper, to reduce the
dependence on a sequence of input data while keeping the small
batch size k to 1, we adopt a method of randomly determining
whether or not to update the neural network parameters for each
step, as shown in lines 22-23. More specifically, depending on
a random value r2, the latest experience (i.e., a set of observed
values, action at, and state st) is sequentially trained so that the
batch size is fixed to 1 and the pseudo inverse matrix operation
can be eliminated. Assuming that the first initial training is
done by software and all the subsequent sequential training is
computed by the FPGA device (see Figure 3), we can eliminate
the buffer D in the FPGA part. Thus, a combination of the
random update with OS-ELM whose batch size is set to 1 [3]
can reduce both computational cost and memory usage 2.

B. OS-ELM Q-Network with Regularization/Normalization

In Q-learning, a neural network is updated based on com-
parisons of an expected value of the reward with the next state;
thus, it can be expected that Q-values in successive states are
basically close to recent ones. As mentioned in Section II-E,
the spectral regularization and normalization would be effective
in reinforcement learning for improving the generalization
capability. As discussed below, our recommendation is that the
spectral normalization and the L2 regularization are applied to
weight parameters α (lines 2-3) and β (line 20), respectively.

a) Spectral Normalization for β: Let us start with the
spectral normalization for the weight parameter β of OS-ELM
Q-Network. Let σmax(βi) is the largest singular value in β
at step i. In this case, βi is divided by σmax(βi) for every
feedforward operation. To obtain σmax(βi), SVD is typically
applied to β for every time, which is a costly operation; so,
we do not use the spectral normalization for β.

2This approach can mitigate temporal dependency, but the sampling effi-
ciency is reduced compared to the experience replay.



Fig. 3. On-device reinforcement learning on PYNQ-Z1 platform (Steps 4a
and 4c are OS-ELM Q-Network core implemented in FPGA part)

b) L2 Regularization for β: In this paper, we thus use
the L2 regularization for β as an alternative to the spectral
normalization for β. In this case, the initial training of Equation
6, which is called from line 20 of Algorithm 1, is replaced with
Equation 7. This approach is validated below. Assuming A is
a general matrix, the following relation is satisfied.

∥A∥22 = σ2
max(A) ≤ ∥A∥2F =

∑
i

σ2
i (A), (11)

where ∥ ·∥2 and ∥ ·∥F denote a spectral norm and an L2 norm,
respectively. As shown in Relation 11, the L2 norm introduces
a stronger constraint than the spectral norm [11]. This means
that the L2 regularization for βi of OS-ELM can introduce the
same or stronger effect of the spectral regularization.

c) Spectral Normalization for α: Different from β,
weight parameter α of OS-ELM is randomly generated at the
initialization step and not changed at runtime. Since the initial
values of α can be computed at offline (e.g., by software),
the spectral normalization can be easily applied to α, as
shown in lines 2-3 of Algorithm 1. By applying the spectral
normalization for α, the Lipschitz constant depending on α
is suppressed within 1 or less; thus, the Lipschitz constant of
OS-ELM is σmax(βi) or less. More specifically, it depends on
βi and the L2 regularization parameter δ, which means that
the Lipschitz constant can be controlled by these parameters.
As a result, by a combination of the spectral normalization for
α and the L2 regularization for β, the Lipschitz constant of
OS-ELM can be kept under σmax(βi). 3

C. FPGA Implementation
Table I shows the target platform in this paper. Figure 3

shows the design overview of FPGA that consists of CPU and
FPGA parts. The predict and sequential train modules in Steps
4a and 4c are designed with Xilinx Vivado and implemented in
a programmable logic part (denoted as FPGA part) of PYNQ-
Z1 platform, while the initial train in Step 2c is executed by
the CPU part (i.e., Cortex-A9 processor). After the initial train
(Step 2c), Steps 4a, 4b, and 4c are continuously executed as a

3As mentioned in Section II-E, when ReLU or tanh is used as an activation
function, Lipschitz constant of a neural network is derived as a partial product
of Lipschitz constant of each layer. In this case, Lipschitz constant of the
original network without regularization/normalization at step i is derived as
σmax(α)σmax(βi).

TABLE I
SPECIFICATION OF TARGET PLATFORM

OS PYNQ Linux based on Ubuntu 18.04
CPU Cortex-A9 processor (650MHz)
RAM DDR3 SDRAM (512MB)
FPGA Zynq XC7Z020-1CLG400C (100MHz)

TABLE II
FPGA RESOURCE UTILIZATION OF OS-ELM Q-NETWORK CORE

Ñ BRAM [%] DSP [%] FF [%] LUT [%]
32 2.86 1.82 1.49 3.52
64 11.43 1.82 2.47 5.00

128 45.71 1.82 4.50 7.93
192 91.43 1.82 6.44 11.01

main loop. We assume that the interactions with environment
(Steps 2b and 4b) are handled by the CPU part.

A low-cost OS-ELM core optimized to batch size 1 was pro-
posed in [3]. In this paper, we redesigned a further optimized
core that includes both the predict and sequential train modules
(i.e., Steps 4a and 4c) in Verilog HDL, and it is implemented
for the same FPGA platform as in [3]. The target FPGA
device is Xilinx XC7Z020-1CLG400C. Operating frequency
of the programmable logic part is 100MHz, while the CPU
is running at 650MHz. Xilinx Vivado v2017.4 is used for the
implementation.

As shown in the right hand side of Figure 2, in the OS-ELM
Q-Network core, its input size (i.e., the number of input-layer
nodes) is equal to the sum of the numbers of state variables
and a single action variable, which is five in the CartPole-v0
task. The output size is 1, which is a scalar. The number of
hidden-layer nodes is varied from 32 to 256 in the evaluations.
The predict and sequential train modules can be implemented
with matrix add, mult, and div operations. SVD or QRD core is
not needed as in [3]. For these matrix operations, only a single
set of add, mult, and div units is implemented in this design
for minimizing the area, but a parallel execution using multiple
arithmetic units is also possible. We use 32-bit Q20 numbers as
a fixed-point number format. Input data, weight parameters α
and β, and intermediate computation results are stored in on-
chip BRAMs. As mentioned in Section III-A, since the fixed
target Q-network technique is used, two sets of neural network
parameters θ1 and θ2 are needed. Specifically, the same α is
used for both θ1 and θ2, while different β is needed for θ1 and
θ2; thus, two sets of β are implemented in the BRAMs.

Table II shows FPGA resource utilization of the OS-ELM
Q-Network core that consists of the predict and sequential train
modules when the number of hidden-layer nodes Ñ is changed
from 32 to 256. The largest design with 256 hidden-layer nodes
cannot be implemented for PYNQ-Z1 board due to an excessive
BRAM requirement. The other designs can be fit into the FPGA
device. The BRAM utilization is thus a limiting factor, and
those of the other resources are not high.

IV. EVALUATIONS

The proposed OS-ELM Q-Network is evaluated in terms of
the execution time to complete a reinforcement learning task.
Its variants with and without the spectral normalization and L2
regularization techniques are compared to a typical DQN.



A. Evaluation Environment

As a reinforcement learning task in this experiment, we use
OpenAI Gym CartPole-v0 that tries to make an inverted pendu-
lum stand longer. As simulation parameters, Cart position, Cart
velocity, Pole angle, and Pole velocity at tip are set to -2.4 to
2.4, −∞ to∞, -41.8°to 41.8°, and −∞ to∞, respectively. The
numbers of state variables and actions are 4 and 2, respectively.

The following designs are compared in terms of (i) training
curve and (ii) average execution time to complete the reinforce-
ment learning task. The proposed FPGA design is evaluated in
terms of FPGA resource utilization.

1) OS-ELM: The proposed OS-ELM Q-Network with the
fixed target Q-network, simplified output model, Q-value
clipping, and random update techniques (i.e., the L2 reg-
ularization and spectral normalization are not included)

2) OS-ELM-L2: The above OS-ELM with the L2 regular-
ization for β

3) OS-ELM-Lipschitz: The above OS-ELM with the spec-
tral normalization for α

4) OS-ELM-L2-Lipschitz: The above OS-ELM with the
spectral normalization for α and L2 regularization for β

5) DQN: A three-layer DQN with the fixed target Q-
network and experience replay

6) ELM: The above DQN replaced with ELM with the
simplified output model and Q-value clipping

7) FPGA: Same as OS-ELM-L2-Lipschitz but its pre-
diction and sequential training parts are implemented
in programmable logic using fixed-point numbers as
described in Section III-C

We use ReLU as an activation function. As reinforcement
learning parameters, we use the following setting: ε1 = 0.7,
ε2 = 0.5, and UPDATE STEP = 2. As the L2 regular-
ization parameter, δ is set to 1 and 0.5 for OS-ELM-L2 and
OS-ELM-L2-Lipschitz, respectively. In DQN, ε2 is not used,
the buffer depth for the experience replay is set to 10,000, the
batch size is set to 32, Adam [12] is used as an optimizer, the
learning rate is set to 0.01, and Huber function [13] is used as
a loss function.

B. Training Curve

In this section, algorithm-level evaluations for the reinforce-
ment learning task are conducted. Among the seven designs
listed in Section IV-A, ELM, OS-ELM, OS-ELM-L2, OS-
ELM-Lipschitz, OS-ELM-L2-Lipschitz, and DQN are com-
pared 4. They are executed as a software on a 650MHz Cortex-
A9 processor of the PYNQ-Z1 board. NumPy version 1.17.2
and Pytorch version 1.3.0 are used for DQN and the ELM/OS-
ELM based approaches, respectively. In the designs other than
DQN, because their dependence on initial weight parameters
are high, unpromising weight parameters are reset when a
given condition is met. Specifically, the ELM/OS-ELM based
approaches are reset if they did not complete the reinforcement
learning task after 300 episodes elapsed.

4Here, OS-ELM-L2-Lipschitz is corresponding to FPGA. Their difference
is that FPGA uses 32-bit Q20 fixed-point numbers, but the negative impact
was not significant in this experiment.

Figure 4 illustrates training curves of the six designs when
the number of hidden-layer nodes Ñ is varied from 32 to
192. X-axis shows the number of episodes elapsed, and Y-
axis shows the number of continuous steps that the inverted
pendulum is standing (higher is better). There are two line types
for each design. Light-colored lines show the number of steps
for continuously standing in each episode, and highly-colored
lines show the moving average over the last 100 episodes. In
these graphs, a representative result is picked up for each design
for illustration purpose. Average execution time to complete the
task is evaluated in Section IV-C.

The upper left graph shows the results when the number
of hidden-layer nodes is 32. In this case, in addition to
the baseline DQN, the proposed OS-ELM Q-Networks with
regularization and/or normalization techniques (OS-ELM-L2
and OS-ELM-L2-Lipschitz) acquire better actions that can
make the inverted pendulum stand longer. In the case of OS-
ELM, on the other hand, as the number of episodes increases,
the number of steps for continuously standing is getting worse.
This result demonstrates that the Q-value clipping technique
is not sufficient for the stable reinforcement learning and the
regularization and/or normalization techniques are required.

The reinforcement learning is stable in OS-ELM-L2-
Lipschitz that uses both the L2 regularization and spectral nor-
malization. In this case, a generalization capability is improved
by the L2 regularization and an output range is limited by the
spectral normalization. That is, the L2 regularization works
directly on weight parameters β which are updated at each
step. The spectral normalization affects α so that an output
value range of OS-ELM-L2-Lipschitz is less than or equal to
σmax(β); thus, outliers due to α values can be suppressed by
the spectral normalization. Please note that even if rewards of
OS-ELM-L2-Lipschitz are declined once, it can recover the
situation and then get right actions.

The upper right graph shows the results when the number of
hidden-layer nodes is 64. A similar tendency mentioned above
is observed in this case too, but ELM also acquires correct
actions, because it is expected that this configuration (Ñ = 64)
is best suited for ELM.

The lower two graphs show the results when the numbers of
hidden-layer nodes are 128 and 192. These results are similar.
Only DQN and the proposed OS-ELM-L2-Lipschitz can
acquire correct actions. OS-ELM-L2 and OS-ELM-Lipschitz
fail to learn correct actions, indicating that using either the L2
regularization or the spectral normalization is not sufficient.
In summary, OS-ELM-L2-Lipschitz can avoid the overfitting
situation and acquire correct actions thanks to the constraints
on both α and β.

C. Execution Time to Complete
We evaluate the seven designs in terms of execution times

to complete the CartPole-v0 task when the number of hidden-
layer nodes Ñ is varied from 32 to 192. In this evaluation,
an execution was terminated as “impossible” if it could not
complete the task after 50,000 episodes. As a result, OS-
ELM and OS-ELM-Lipschitz could not complete the task in
our evaluation. Also, ELM was not stable. Figure 5 shows
the execution times of OS-ELM-L2, OS-ELM-L2-Lipschitz,



Fig. 4. Training curve (light-colored lines: # of steps for continuously standing in each episode; highly-colored lines: moving average over last 100 episodes)

DQN, and FPGA. DQN is separated in the graph since its
execution time is quite large compared to the others. Table III
shows detailed breakdown of the proposed FPGA design.

In these graphs, each bar shows the execution time break-
down of each operation: train seq, predict seq, train init, pre-
dict init, train DQN, predict 1, and predict 32.

• In the OS-ELM based approaches except for FPGA,
train init and train seq indicate their initial training and
sequential training, respectively. predict init and pre-
dict seq are their predictions before and after their initial
training is completed, respectively. All these operations
are done by the CPU part.

• In the proposed FPGA, before the initial training,
train init and predict init (Steps 2a and 2c) are executed
by the CPU part. After the initial training, train seq and
predict seq (Steps 4a and 4c) are done by the FPGA
part. PS and PL parts are connected via AXI bus and
DMA transfer is used for their communication though not
fully implemented in our design. We assume data transfer
latency between the CPU and FPGA parts is 1 cycle per
float32. This is an optimistic assumption, but we use this
value for simplicity because it varies depending on an
underlying hardware platform (e.g., DMA performance).

• In the baseline DQN, train DQN is its training. pre-
dict 1 and predict 32 indicate its predictions when the
batch sizes are 1 and 32, respectively. More specifically,
predict 1 and predict 32 are called from Determine and
Update states, respectively. All the operations are done by

TABLE III
EXECUTION TIME TO COMPLETE (BREAKDOWN OF FPGA) [SEC]

Ñ train seq predict seq train init predict init Total
32 7.847 1.466 0.023 0.053 9.389
64 22.458 2.135 0.047 0.067 24.707
128 84.038 4.036 0.245 0.166 88.484
192 218.258 7.005 0.685 0.281 226.230

the CPU part.
Execution time for interactions with a given environment (Steps
2b and 4b) is not considered in this evaluation. train init and
predict init exist but are negligible.

The breakdown of each operation is computed by (the
number of executions of the operation) × (execution time of the
single operation). train seq is dominant compared to train init
because train init is executed only once for each episode. These
execution times are averaged over 150 trials.

When the number of hidden-layer nodes is 32, OS-ELM-
L2, OS-ELM-L2-Lipschitz, DQN, and FPGA can acquire
correct actions. Their execution times are 132.27sec, 55.02sec,
3232.54sec, and 9.39sec, respectively. When the number
of hidden-layer nodes is 64, OS-ELM-L2, OS-ELM-L2-
Lipschitz, DQN, and FPGA can acquire correct actions. Their
executions times are 647.56sec, 74.20sec, 2208.90sec, and
24.71sec, respectively. The execution times of OS-ELM-L2,
OS-ELM-L2-Lipschitz, and FPGA are increased compared
to their previous result having 32 hidden-layer nodes because
of a larger matrix size. In this case, OS-ELM-L2, OS-ELM-
L2-Lipschitz, and the proposed FPGA are faster than DQN
by 3.41x, 29.77x, and 89.40x, respectively.



(a) OS-ELM based approaches (b) DQN
Fig. 5. Execution time to complete [sec]

These results demonstrate that FPGA is the fastest followed
by OS-ELM-L2-Lipschitz and DQN, because update formula
of the OS-ELM based approaches is simple as shown in Equa-
tions 5 and 7. Although FPGA and OS-ELM-L2-Lipschitz
use the same algorithm, FPGA is faster, because train seq and
predict seq are accelerated by dedicated circuits, as shown in
Figure 3. Regarding the performance bottleneck, the OS-ELM
based approaches spend most of time for train seq, while DQN
spends a certain time for train DQN, predict 1, and predict 32.
As mentioned above, the execution times tend to increase as
the number of hidden-layer nodes is increased except for DQN.
This is because the size of matrix products is denoted as
RÑ×Ñ · RÑ×Ñ , and the computation cost increases rapidly
as the number of hidden-layer nodes is increased. Such matrix
products can be accelerated efficiently by dedicated logic; thus,
the proposed FPGA design is advantageous for the on-device
reinforcement learning on resource-limited edge devices.

V. SUMMARY

To solve reinforcement learning tasks on resource-limited
edge devices, in this paper, we proposed OS-ELM Q-Network
as a lightweight reinforcement learning algorithm that do
not rely on a backpropagation based iterative optimization.
More specifically, the following techniques were proposed
for OS-ELM Q-Network: (1) simplified output model, (2) Q-
value clipping, (3) random update, and (4) combination of
the spectral normalization for α and L2 regularization for β.
Especially, thanks to (4), the Lipschitz constant of OS-ELM
can be suppressed under σmax(β) and further controlled by
adjusting the parameter δ.

OS-ELM Q-Network with all the above techniques was
designed for PYNQ-Z1 board as a low-cost FPGA platform by
extending an existing on-device learning core [3]. Prediction
and sequential training in most of Determine and Update
states (i.e., predict seq and train seq) are accelerated by the
FPGA part, and the others are executed by the CPU part. The
evaluation results using OpenAI Gym demonstrated that the

proposed OS-ELM-L2-Lipschitz and its FPGA implementa-
tion complete a CartPole-v0 task 29.77x and 89.40x faster
than a conventional DQN-based approach when the number
of hidden-layer nodes is 64. Also, they are robust against the
number of hidden-layer nodes thanks to (4).

Acknowledgements This work was partially supported by JST
CREST Grant Number JPMJCR20F2, Japan.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with Deep Reinforcement Learn-
ing,” arXiv:1312.5602, Dec 2013.

[2] L.-J. Lin, “Reinforcement Learning for Robots Using Neural Networks,”
Ph.D. dissertation, Carnegie Mellon University, USA, Jan 1993.

[3] M. Tsukada, M. Kondo, and H. Matsutani, “A Neural Network-Based On-
device Learning Anomaly Detector for Edge Devices,” IEEE Transactions
on Computers, vol. 69, no. 7, pp. 1027–1044, Jul 2020.

[4] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A
Fast and Accurate Online Sequential Learning Algorithm for Feedforward
Networks,” IEEE Transactions on Neural Networks, vol. 17, no. 6, pp.
1411–1423, Nov 2006.

[5] K. Hornik, M. Stinchcombe, and H. White, “Multilayer Feedforward
Networks are Universal Approximators,” Neural Networks, vol. 2, no. 5,
pp. 359 – 366, Jul 1989.

[6] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral Nor-
malization for Generative Adversarial Networks,” in Proceedings of the
International Conference on Learning Representations (ICLR’18), Feb
2018.

[7] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme Learning Machine: A
New Learning Scheme of Feedforward Neural Networks,” in Proceedings
of the International Joint Conference on Neural Networks (IJCNN’04),
Jul 2004, pp. 985–990.

[8] H. T. Huynh and Y. Won, “Regularized Online Sequential Learning
Algorithm for Single-Hidden Layer Feedforward Neural Networks,”
Pattern Recognition Letters, vol. 32, no. 14, pp. 1930 – 1935, Oct 2011.

[9] V. Mnih et al., “Human-Level Control through Deep Reinforcement
Learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb 2015.

[10] J. Achiam, “Spinning Up in Deep Reinforcement Learning,” https:
//github.com/openai/spinningup, 2018.

[11] Y. Yoshida and T. Miyato, “Spectral Norm Regularization for Improving
the Generalizability of Deep Learning,” arXiv:1705.10941, May 2017.

[12] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proceedings of the International Conference on Learning Representa-
tions (ICLR’15), May 2015.

[13] P. J. Huber, “Robust Estimation of a Location Parameter,” Annals of
Mathematical Statistics, vol. 35, no. 1, pp. 73–101, Mar 1964.


