
A Scalable Secure Fault Tolerant Aggregation for
P2P Federated Learning
Yujiro Yahata, Keisuke Sugiura and Hiroki Matsutani

Dept. of ICS, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522
EMail: {yahata,sugiura,matutani}@arc.ics.keio.ac.jp

Abstract—In federated learning (FL), client models rather than
the training data are uploaded to the aggregation server, so that
clients can participate in a learning process while maintaining
their privacy. However, there is still a possibility that the client’s
data can be inferred from the aggregated model. Also, when
the aggregation server fails, the learning process is interrupted.
P2P FL systems that eliminate a single point of failure or
enable secure aggregation have also been proposed, but they
have scalability issues due to the high communication cost. In
this paper, we therefore propose a scalable, secure and fault
tolerant aggregation system for P2P FL. By introducing a two-
layer network which consists of the Secure Average Computation
(SAC) layer and Federated Averaging (FedAvg) layer, our system
achieves both the privacy protection of participating peers and
the reduction of total communication cost. We also propose a
fault-tolerant SAC to handle peer dropouts during aggregation.
As a backend to the above system, we propose a two-layer Raft,
which successfully improves the fault tolerance against random
peer crashes. Experimental results show that our two-layer
aggregation system outperforms the original SAC in terms of
the communication cost and fault tolerance with the comparable
accuracy, slow subgroups in SAC layer do not affect the overall
accuracy and our two-layer Raft maintains availability by quickly
detecting a crashed leader and replacing it with new one. The
analysis shows that our system consisting of 30 peers reduces
communication costs by 10.36x while providing fault torelance.

Index Terms—privacy-preserving protocols, secure aggrega-
tion, machine learning, federated learning, Raft, communication
complexity, node scalability, consensus mechanism

I. INTRODUCTION

Federated learning (FL) [1] is a learning method in which
each client trains a local model with its own training data
and local models are aggregated to update a single global
model. In general, a central server updates the global model by
aggregating the local models from clients. However, the server
becomes a single point of failure, which makes it difficult to
continue the federated learning process when the server or
the load balancer to which the server belongs fails. Since
each client provides a local model rather than data to the
central server, FL is a useful technique for privacy protection,
but there remains the possibility that the central server could
infer the client’s training data from the client’s model with a
membership inference attack [2].

Peer-to-Peer federated learning (P2P FL) has been proposed
as one of the solutions to the above problems. In P2P FL, any
peer in the network can play the role of an aggregation server.
Even if the peer crashes, another peer can take over its role,
thus successfully eliminating the single point of failure [3]. In
addition, Secure Average Computation (SAC) [4] is a method
in which peers compute the aggregated model collaboratively
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Fig. 1. Network topology of the proposed two-layer aggregation system. In
the system, there are m = 3 peers in the first layer, and n = 3 in each SAC
layer subgroup.

without revealing actual values of their local models. However,
SAC has a drawback that the communication cost per aggre-
gation increases quadratically with the number of participating
peers, making the system difficult to scale.

In this paper, we propose a scalable, secure and fault tolerant
aggregation system for P2P FL. We offer three contributions.
First, we build a two-layer aggregation system. As shown
in Fig. 1, we divide peers into multiple subgroups, and the
system is composed of two layers, namely, SAC layer and
FedAvg layer. By combining the SAC layer, which provides
privacy protection of each peer, with the communication-
efficient FedAvg layer, our system achieves both local model
protection for peers and communication cost reduction. Sec-
ond, we propose a fault-tolerant SAC that allows to continue
aggregation even if peers fail. Third, as a backend of our
two-layer aggregation system, we propose a two-layer Raft. It
provides fault tolerance in the event of random peer crashes.
Experimental results demonstrate that our proposed system
achieves the accuracy comparable to the original SAC while
reducing the communication cost and providing fault tolerance
of peers. We also confirm that our two-layer Raft achieves fast
crash recovery from various failure cases.

The rest of this paper is organized as below. Sec. II describes
the related work for P2P FL, secure aggregation and multi-
layer consensus algorithm. Sec. III presents a brief explanation
for FL, SAC and Raft consensus algorithm. In Sec. IV, a
two-layer aggregation system is proposed and its aggregation
flow is described. Sec. V illustrates the system design of two-
layer Raft as the backend of the two-layer aggregation system.
Evaluation results of the two-layer aggregation system and



the two-layer Raft are shown in Sec. VI. Sec. VII analyzes
the communication cost of our aggregation system and fault
tolerance of two-layer Raft. Sec. VIII concludes the paper.

II. RELATED WORKS

A. P2P Federated Learning
Several methods for P2P federated learning (FL) have been

proposed. BrainTorrent [3] is the system to train a shared
model in P2P approach, particularly targeting medical applica-
tions. A center node in a cluster receives the latest models of
other centers and updates its model dynamically. However,
semi-honest participants can infer the dataset from weight
tensors or inject the false data. Monik et al. [5] showed servers
can recover their aggregation network by exchanging messages
using asymmetric keys and selecting an aggregation server
among them with Raft [6], when the old aggregation server
is down. Wink et al. [4] applied an additive secret sharing [7]
to P2P FL to ensure that peers obtain the aggregated result
while preventing the semi-honest peers from inferring the local
dataset from the others’ models. However, the communication
cost during aggregation increases quadratically with the num-
ber of participating peers, which limits the scalability of the
system. It also has the disadvantage that if one of the peers
is disconnected during aggregation, the aggregation must be
restarted from the beginning with remaining peers.

B. Secure Aggregation
Next, we review methods of secure aggregation in normal

FL. Recent works have focused on secure aggregation through
additive masking [8], [9] to keep the practical performance.
In [8], users agree on pairwise secret keys derived by a
Diffie-Hellman key exchange protocol, and each user sends
masked weight parameters to the server, including pairwise
and individual masks. The server can obtain an aggregated
weight by summing the masked data received from users
because the additive mask sums cancel each other out. This
system is tolerant of a certain number of user dropouts, but
has the O(N2) communication cost, where N is the number
of users, and suffers from the overhead during the recovery
process. Turbo-Aggregate [9] achieves the communication cost
reduction of O(N logN), while maintaining resilience to a
50% user dropout rate. In this method, users are divided into
multi groups, which are rotated for each aggregation. The
server aggregates the models sent by users in one group and
a next group receives this shared model.

C. Multi-layer Consensus Algorithm
As a multi-layer consensus algorithm, a double-layer PBFT

model [10] is proposed to reduce the amount of inter-node
communications during consensus for blockchain applications.
The Practical Byzantine Fault Tolerance (PBFT) consensus
algorithm [11] is designed to tolerate Byzantine faults. If
we consider the number of nodes capable of tolerating si-
multaneous faults, denoted as f , then a total of 3f + 1
nodes are required for the entire network. PBFT offers higher
performance than proof based algorithms like Proof-of-Work
(PoW) [12]. However, one drawback of PBFT is the low
scalability with O(N2) communication cost for N nodes.

To address this issue, the authors of [10] proved that its
communication complexity is minimized to about 1.9N
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when nodes are evenly distributed within the second layer
subgroups. They also proposed a general X-layer PBFT model
and proved that the minimum communication complexity is
linear C = 16N−16

3 when the network depth is maximized.

III. PRELIMINARIES

A. Federated Learning

The general idea of federated learning (FL) is to learn a
shared model while keeping the training data on the clients’
local devices and avoiding data leakage. Each round involves
the following steps. First, clients download a current shared
model from a central server and train it using their own data
(local update). The server collects locally-updated models
from randomly selected clients and updates the shared model
(model aggregation). The new shared model is distributed to
the clients for the next round. The above process continues
until a target accuracy is achieved.

Federated Averaging (FedAvg) [1] is widely used as an
aggregation method. Let η be a fixed learning rate, gk be
the gradient update from k-th client and wt be the shared
model at t-th round. An updated shared model, denoted as
wt+1, is given by wt+1 ← wt − η

∑N
k=1

nk

n gk, where nk
is the number of training samples used in the client k, N
is the number of clients selected for the aggregation and
n is the sum of nk. This means the model wt is updated
by the sum of local gradients weighted by the number of
samples. With the updated model for each client, denoted as
∀k,wk

t+1 ← wt − ηgk, the above update law is rewritten as
wt+1 ←

∑N
k=1

nk

n w
k
t+1.

B. Secure Average Computation (SAC)

Secure Average Computation (SAC) [4] is an approach to
collaboratively train a shared model in a decentralized manner
without sharing the actual model (wk

t+1 in Sec. III-A). A
simple n-out-of-n secret sharing scheme, especially additive
secret sharing [13], is a basic form of SAC to calculate
the sum of models of all peers. The aggregation process
in each round is presented in Alg. 2. In the first phase,
the model for the i-th peer wti is randomly divided into
N shares par_wti = (par_wti1, . . . ,par_wtiN ), that satisfy
wti =

∑N
j=1 par_wtij (Alg. 1). The peer i sends par_wtij to

the corresponding peer j, where 1 ≤ j ≤ N, j 6= i (line 3) and
keeps the remaining par_wtii share. The peer i receives the
shares par_wtji (1 ≤ j ≤ N, j 6= i) from the other N−1 peers
(line 5). With these shares, the subtotal ps_wti is calculated
(line 6), which is broadcast to all other peers (line 7). After
receiving subtotals from all peers (ps_wt1, . . . ,ps_wtN ), the
peer i computes their average wavg (line 9), which is identical
to the original average since wavg is rewritten as:

wavg =
ΣN

j=1ps_wtj
N

(1)

=
ΣN

j=1ΣN
i=1par_wtij
N

(2)

=
ΣN

i=1wti
N

. (3)



Algorithm 1 Algorithm to split a secret into N shares
Require: number of peers N , secret to be split w
1: function Divide(N , w)
2: rn = Array of N random numbers (rn1, rn2, . . . , rnN )
3: prn = Array of length N (prn1, prn2, ..., prnN )
4: for i = 1 to N do
5: prni = rni

ΣN
k=1

rnk

6: par_w = Array of length N (par_w1, par_w2, . . . ,par_wN )
7: for i = 1 to N do
8: par_wi = prni · w
9: return par_w

Algorithm 2 SAC in peer i (1 ≤ i ≤ N)
Require: number of peers N , model wti
1: function SecAVG(N , wti)
2: par_wti = Divide(wti, N) . dim: number of matrix dimensions
3: for j = 1 to N do . Send a share of each model to other peers
4: Send par_wtij to peerj
5: Save all received partitions and par_wtii
6: ps_wti = ΣN

j=1par_wtji . Calculate subtotals of each model
7: Send ps_wti to all peers
8: Save all received subtotals and ps_wti

9: wavg =
ΣN

j=1ps_wtj
N

10: Confirm if all other nodes successfully finished SAC
11: return wavg

Here, we analyze the communication cost of SAC in each
round. Let |w| be the size of a weight tensor of a model
w. First, the communication cost of the whole network to
exchange shares par_wtij is given by N(N − 1)|w| (lines
3–4). Next, the cost to exchange the subtotals ps_wti of size
|w| is N(N −1)|w| (line 7). The total cost for an aggregation
is 2N(N−1)|w|. This means SAC has limited scalability since
the cost increases quadratically with the number of peers.

C. Raft Consensus Algorithm

Consensus algorithms are typically built upon a replicated
state machine [14] that allows a group of machines to remain
coherent and survive the failures of some of its members. They
ensure the safety under practical conditions and the availability
as long as majority of the machines are running. They also
keep the consistency of the state machine regardless of timing.
The overall system performance is typically not affected by a
few slow servers.

Raft [6] is a consensus algorithm that has similar per-
formance to others like Paxos [15] under non-Byzantine
conditions and successfully enhances understandability of the
algorithm. Raft enables a crashed server to rejoin the cluster
at any time by following the state transition sequence (Fig. 2).
Raft decomposes the consensus problem into three relatively
independent subproblems: leader election, log replication and
safety.

1) Three States of Servers and Leader Election: As shown
in Fig. 2, each server is in one of three states: leader, follower
and candidate. The leader handles all requests from clients, and
followers respond to requests from the leader or candidates.
Candidates are the servers which could be elected as a leader.

Raft has a logical clock called term, which is a sequence of
integers. Each term starts with a leader election. If a candidate
receives votes from more than a half of the servers in a cluster,
it becomes the leader for the rest of the term. The leader
regularly sends heartbeats to all followers to inform that the

receives votes from majority

Follower Candidate Leader

init
election timeout passes

starts re-election by timeout

receives message from leader with higher term

receives message
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Fig. 2. Server states in Raft consensus algorithm. A server in Raft transitions
among three states: leader, follower and candidate.

leader is present. If a follower does not receive heartbeats for
a certain period of time, called the election timeout, it assumes
there is no valid leader and initiates an election. To start the
election, the follower increments its term, changes its state to
candidate, and invokes RequestVote RPCs to gather votes from
other servers.

2) Log Replication: The elected leader accepts requests
from clients and executes commands contained in requests
for its replicated state machine. It appends the command to
its log as a new entry and then issues AppendEntries RPCs to
replicate the same entry in all servers. Once the entry has been
safely replicated (committed) on a majority of the servers, the
leader applies the command to its state machine and returns the
execution result to the client. Committed entries are durable,
meaning the command in the entry will eventually be executed
on all available state machines. The leader keeps track of an
index of the latest committed entry and includes it in Ap-
pendEntries RPCs to synchronize the follower’s state with the
leader. Raft keeps the log coherency across different servers,
while satisfying the following properties: if two different logs
have an entry with the same index and term, they are identical
up to that index.

3) Safety: From the viewpoint of safety, we describe the
restrictions in the election and the case of committing entries
of previous terms. First, Raft imposes a restriction on the
leader, i.e., it should keep all the entries committed in the
previous terms at any point. For this reason, only a candidate
with the up-to-date log wins the election. During the election,
RequestVote RPCs sent by the candidate include the candi-
date’s log status so that the voter can determine whether the
candidate keeps its log up-to-date. There is also no possibility
that the leader commits an entry for a past term (only entries
for the current term are committed). This means all previous
entries are present in the log when an entry for the current
term is committed.

IV. TWO-LAYER AGGREGATION SYSTEM

We propose a two-layer model parameter aggregation sys-
tem to improve the communication efficiency, security and
fault-tolerance of the P2P federated learning. This section
presents the flow of aggregation, how to select a leader to take
the initiative in aggregation, and the details of aggregation in
each layer.



A. Aggregation Flow

Fig. 1 shows the overview of our system. The peers are
divided into multiple subgroups and the system is composed
of two layers, namely, SAC layer and FedAvg layer. SAC layer
corresponds to each subgroup (blue circles) and FedAvg layer
is for a higher group (red circle). Each SAC subgroup has
a leader (orange circles) and FedAvg layer also has a leader
called the FedAvg leader (green circle). As shown in Sec.
III-B, SAC lacks the scalability due to O(N2) communication
cost, but that of our system is reduced from O(N2) to O(nN)
as described later.

Each aggregation is performed in the following steps (Alg.
3). First, a FedAvg leader requests subgroup leaders in SAC
layer to upload SAC-aggregated models. Upon receiving the
request, each subgroup leader performs SAC (line 3). When
SAC is done, the subgroup leader sends aggregated models to
the FedAvg leader (line 9). The FedAvg leader starts aggre-
gation via FedAvg with enough amount of models collected
from subgroups (line 10). The aggregated result is broadcast
to all subgroup leaders. All peers in subgroups receive it from
their corresponding subgroup leader and resume learning with
their own data. Our proposal is agnostic to the aggregation
algorithm, which can be chosen appropriately for each use
case.
Algorithm 3 Two-layer SAC
Require: A set of subgroup leaders S
1: function ExecuteTwoLayerSAC(S)
2: W ← ∅ . A set of aggregated models W for subgroups
3: for each leaderi ∈ S do
4: n = length(leaderi) . leaderi checks the number of peers in its

subgroup
5: k = takeThreshold(leaderi) . leaderi picks up a threshold for

reconstructing secret weights
6: wti ← getClientModel . a model of leaderi
7: wi

avg ← FaultTolerantSAC(n, k,wti) . leaderi initiates
k-out-of-n SAC

8: N ← N ∪ {n}
9: W ←W ∪

{
wi

avg

}
. An updated set of aggregated models by

leaderi

10: wavg =

∑
w∈W,n∈N

w·n∑
n∈N

n
. FedAvg

11: return wavg

B. Aggregation Leader

In our system, each subgroup has one leader elected by
Raft and multiple followers. Generally, the leader takes the
initiative in aggregation and followers respond to the requests
from their leader. Followers participate in the Raft process
and acquire the information about their leader on their own.
The follower discards the aggregation request if the sender
is different from the current leader tracked by the follower
itself. Subgroup leaders in SAC layer are connected to FedAvg
layer via an additional Raft process. FedAvg layer also has one
leader, which aggregates the models from the other followers
(i.e., subgroup leaders) to update a shared model and proceed
to the next round (Alg. 3).

C. SAC Layer with Fault-Tolerance

During SAC, the models of subgroup peers are aggregated
via a simple n-out-of-n additive secret sharing on a complete

graph network, without each peer having to share its model
to others. However, one drawback is that SAC is not robust
to random failures. Even if one peer is disconnected, the
aggregation must be aborted. In Alg. 2, if the k-th peer fails
to share its partitions par_wtkl (k 6= l) (line 4), the other
peers cannot compute the subtotal ps_wtm (m 6= k) due to
the missing partition, and thus the aggregation process cannot
proceed. To solve this problem, we apply Replicated Additive
Secret Sharing [7] like k-out-of-n (1 ≤ k ≤ n) to SAC to
allow failures of up to n − k nodes. k-out-of-n SAC means
the aggregation is still operational as long as k out of n peers
are alive.

Alg. 4 shows our proposed aggregation method in each
round. Let N be the total number of peers participating in
SAC, K (1 ≤ K ≤ N) be the threshold for reconstructing
the secret average and wti be the model for the leader (i-
th peer). First, after randomly partitioning wti into N shares
(line 2), the i-th peer sends N −K + 1 consecutive partitions
to each peer (lines 3-9). The i-th peer receives the partitions
(line 10) and then starts calculating N − K + 1 subtotals
ps_wtj′ (j′ = j mod N, i ≤ j ≤ i + N − K) (lines
11–13). If peer i is the leader, it receives subtotals from
other peers which it does not contain (lines 14–16). When
the leader detects the peer j (j 6= i) is down, it asks
peerk mod N (j−(N−K) ≤ k ≤ j−1) for ps_wtj (lines 17–
18). After receiving all subtotals (line 19), the leader computes
the average of them wavg (line 20). A diagram in Fig. 3
presents the specific 2-out-of-3 SAC case, where though one
peer drops out during the aggregation, the remaining peers
complete the SAC.
Algorithm 4 Fault-tolerant SAC in the leader (peer i) (1 ≤
i ≤ N)
Require: number of peers N , threshold for reconstructing secret weights

K (1 ≤ K ≤ N), weight tensors wti
1: function FaultTolerantSAC(N , K, wti)
2: par_wti = Divide(wti, N)
3: for j = 0 to N − 1 do . Send shares of weight values to other peers
4: pars← ∅ . A set of shares pars to be sent to peerj
5: for k = j to j + N −K do
6: j′ ← j mod N
7: pars← pars ∪

{
par_wtij′

}
8: if j 6= i then
9: Send pars to peerj

10: Save all received partitions and par_wti
11: for j = i to i + N −K do
12: j′ ← j mod N
13: ps_wtj′ = ΣN−1

k=0 par_wtkj′ . Calculate subtotals of each weight
14: for j = i−K + 1 to i− 1 do
15: j′ ← j mod N
16: Receive ps_wtj′ from peerj′

17: if peerj (0≤j≤N−1) is crashed then
18: Ask peerk mod N (j−(N−K)≤k≤j−1) for ps_wtj

19: Save received subtotals and ps_wtj mod N (i≤j≤i+(N−K))

20: wavg =
ΣN

j=1ps_wtj
N

21: Confirm if all other nodes successfully finished SAC
22: return wavg

D. FedAvg Layer

A FedAvg leader aggregates the models from SAC layer via
FedAvg. Considering that SAC is employed in the lower layer
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and the private training data of the peers cannot be recovered
directly from the SAC-aggregated models, the standard Fe-
dAvg can be used instead of the secure aggregation method in
the higher layer. However, security analysis for the aggregated
model is out of the scope in this paper. In case where stronger
privacy guarantees are needed, SAC could be employed in the
higher layer. Other techniques such as Differential Privacy [16]
could be used to add noise to the weight of each peer.

V. TWO-LAYER RAFT

We propose two-layer Raft, which serves as the backend
of our two-layer aggregation system. The main reason for
combining Raft with P2P federated learning is to ensure fault
tolerance in the event of an aggregation leader crash. The Raft
leader election can quickly recover the whole system after the
leader crash and helps to continue the aggregation process. Log
replication is only used to share the configurations of FedAvg
layer with SAC layer subgroups. This section describes how
our system recovers from the four failure cases, i.e., the failure
of leader/follower in FedAvg/SAC layer.

A. Fault Tolerance in SAC Layer

1) Leader Crash: If the subgroup leader crashes, Raft
leader election is initiated by the remaining peers in that
subgroup. Additionally, our system has a post-leader election
callback, where the newly elected leader automatically joins
the group in FedAvg layer as a follower by referring to the
FedAvg-layer configuration. The whole procedure of leader
crash recovery is presented in Fig. 4. First, followers in
the subgroup detect the leader crash from not receiving the
heartbeat. Some of them become candidates for the next term
when their own election timeout elapses. Candidates send
RequestVote RPCs to other peers in order to receive votes

Future LeaderOriginal Leader

Send heartbeat

ObjectObjectFollowers

Send heartbeat

Wait for heartbeat
Wait for heartbeat

Election timeout
elapses Send RequestVote RPC

Reply votes
from majority

FedAvg Leader

Become
a subgroup leader

Network failure

Connect to
FedAvg layer

Accept new peer and
change configurationSend heartbeat

Send heartbeat

Fig. 4. Overview of a SAC-layer leader crash recovery

from the majority before anyone else. Once the candidate
becomes a leader in that subgroup, it will automatically join
FedAvg layer as a follower. In our system, the subgroup leader
periodically commits the configuration of FedAvg layer, e.g.,
IP addresses and IDs of peers in FedAvg layer, to its subgroup
state machine.

When Raft is operational in FedAvg layer, the majority of
peers stored in the FedAvg-layer configuration are expected
to be still alive, so a subgroup leader can connect to the Fe-
dAvg leader directly or through other FedAvg-layer followers.
Thanks to the strong consistency in Raft, once configurations
are committed, it is guaranteed to be shared by the majority of
state machines in the subgroups. As described in Sec. III-C, the
peer is elected as a leader only if it has the latest configuration
in the log.

2) Follower Crash: The Raft network is tolerant to the
random crash of the followers and keeps running as long as a
majority of the peers are active.

B. Fault Tolerance in FedAvg Layer
1) Leader Crash: If the FedAvg leader crashes, two leader

elections take place because it was the subgroup leader in
SAC layer as well. First, a leader election is performed with
the remaining peers in FedAvg layer. At the same time, the
election is performed at the subgroup in SAC layer as well.
Note that the new subgroup leader cannot join FedAvg layer
until the election in FedAvg layer completes, because a new
peer cannot be added to the FedAvg-layer group without the
FedAvg leader present. A subgroup leader periodically sends a
request to FedAvg layer to confirm the presence of a FedAvg
leader. Once a FedAvg leader is detected, a subgroup leader
is connected to FedAvg layer following the procedure similar
to that described in Sec. V-A1.

2) Follower Crash: Since the follower in FedAvg layer
is also a leader in a SAC-layer subgroup, its crash leads to
an unstable state where no leader is present in the subgroup.
As shown in Sec. V-A1, a leader election in the subgroup is
initiated and the new leader connects to FedAvg layer.

VI. IMPLEMENTATION AND EVALUATION

We implemented a two-layer parameter aggregation for P2P
federated learning based on a two-layer Raft. Our system is
mainly divided into two parts. The first one is a federated
learning part that handles the model training and two-layer



TABLE I
EVALUATION ENVIRONMENT

OS Ubuntu 20.04 LTS
CPU Intel Core i9-10980XE @ 4.6GHz
GPU NVIDIA GeForce RTX 3090Ti 24GB

DRAM DDR4 DRAM 128GB

(10)

Convolution
Kernel: (3, 3)

Padding: same
Activation: ReLU

Input Image(32, 32, 3)

Convolution
Kernel: (3, 3)
Padding: valid

Activation: ReLU

MaxPooling
Poolsize: (2, 2)
Dropout: (0.25)

(32, 32, 32)

(30, 30, 32)

(15, 15, 32)

Convolution
Kernel: (3, 3)

Padding: same
Activation: ReLU

Convolution
Kernel: (3, 3)
Padding: valid

Activation: ReLU

(15, 15, 64)

MaxPooling
Poolsize: (2, 2)
Dropout: (0.25)

(13, 13, 64)

(6, 6, 64)

Dense
Units: 512

Activation: ReLU
Dropout: (0.5)

Dense
Units: 10

Activation: Softmax

(512)

Flatten
(2304)

Fig. 5. CNN model architecture (same as in the baseline [4]) for CIFAR-
10. The model is relatively small with 1.25M parameters. It consists of two
building blocks, each having two consecutive convolutional layers followed
by max pooling and dropout. ReLU is used as an activation function. Two
dense layers are placed before the output. The first dense layer has ReLU and
dropout, while the second one has softmax activation.

parameter aggregation on a P2P network. The second one
is a Raft part for a leader election, which is a key to the
fault tolerance. It allows to continue the federated learning
after random peer crashes by dynamically assigning the leader
role to remaining alive peers. The federated learning part
uses Python 3.8.10 and PyTorch 2.0.1. The two-layer Raft
is implemented with Go 1.21.4 and hashicorp/raft 1.5.0 [17].
Our system is an extension of hashicorp Raft, with gRPC [18]
used for communication between FedAvg and SAC layers. The
machine in Table I is used throughout the evaluation.

A. Two-Layer Aggregation
1) Evaluation Setup: CNN model used in this evaluation

is the same as the one in the baseline P2P-FL [4], and its
detailed structure is presented in Fig. 5.

We used two datasets (MNIST [19] and CIFAR-10 [20]) for
image classification in our two-layer aggregation. MNIST is a
well-known set of grayscale handwritten digit images (28x28
pixels). The dataset is divided into a training set of 60,000
labeled images and a test set of 10,000 labeled images. The
CIFAR-10 dataset includes 60,000 labeled RGB images of
32x32 pixels with 50,000 for training and 10,000 for testing.
As for the training data distribution, three different cases are
considered as in the paper [4].
• IID data: Training dataset for each peer is identically

and independently distributed.
• Non-IID data (5%): The 95% of training data for each

peer are samples from two main classes randomly se-
lected out of the ten classes, and the 5% are taken from
the rest classes.

• Non-IID data (0%): Training dataset for each peer con-
tains samples from two main classes randomly selected
out of the ten classes.

We utilized the Adam optimizer with a learning rate of 0.0001
and categorical cross-entropy as a loss function. The number
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Fig. 6. Moving average of test accuracy between two-layer SAC and the
baseline for a total of N = 10 peers and 1000 communication rounds.
Each subgroup has n = 3, 5, 10 peers. The peers are equally divided into
subgroups. For example, in case of n = 3, the N = 10 peers are divided
into three subgroups with 3, 3, and 4 peers each. In case of n = N , the
system is simplified to the original SAC.

of training rounds is set to 1000, the number of epochs in each
round to 1, and the batch size to 50. In each round, peers train
their models with their own datasets, and then the models
are aggregated via SAC in subgroups. The SAC-aggregated
models are then aggregated by the FedAvg leader. Finally, the
aggregated model in FedAvg layer is then sent to all peers in
SAC layer and the next round starts.

2) Accuracy and Loss for CIFAR-10: First, we compared
original SAC (Alg. 2) to our proposed two-layer SAC (Alg. 3)
in terms of the test accuracy and training loss. Figs. 6–7 show
the results. In these evaluations, the total number of peers is
N = 10, and every subgroup is formed by n = 3, 5, 10 peers.
The n = 10 case (i.e., only one subgroup) corresponds to the
original SAC. As shown in the figures, our two-layer SAC
(blue, red) has the same test accuracy and training loss as the
baseline (pink) while reducing the communication complexity.
Both methods achieve the best accuracy under the IID data
setting, and the accuracy drops as the data distribution deviates
from the IID. After 1000 rounds, the n = 3 case achieves the
highest accuracy of 74.69% under IID data setting. On the
other hand, the accuracy of n = 3 is 57.95% under non-IID
(0%) setting. Differences in the number of peers in subgroups
do not cause significant accuracy changes (less than 2% in
most cases). The similar results are obtained with MNIST
dataset as well.

3) Resilience to Slow Subgroups: Next, we show slow
subgroups in SAC layer do not affect the overall accuracy with
CIFAR-10 dataset. In this evaluation, only m out of bN/nc
subgroups participate in the FedAvg aggregation to simulate
slow subgroups that cannot submit their SAC-aggregated
models to the FedAvg leader before timeout. We denote
p = m/bN/nc as a fraction of the subgroups used. Figs. 8–
9 show the accuracy and loss under N = 20, n = 5, and
p = 0.5, 1. Here, p = 1 means the FedAvg leader aggregates
models of all subgroups and p = 0.5 means the FedAvg
leader aggregates half of the models from subgroups. Since the
number of subgroups is four in this condition, two subgroups
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Fig. 7. Moving average of training loss between two-layer SAC and the
baseline for N = 10. The experimental setting is the same as that in Fig. 6.
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Fig. 8. Moving average of test accuracy for a different fraction in the two-
layer SAC (N = 20, n = 5). A fraction is the proportion of SAC layer
subgroups used for the FedAvg layer aggregation.

are involved in the FedAvg layer aggregation.
Fig. 8 confirms that the similar accuracy is obtained even

though the FedAvg leader cannot collect models from all
subgroups. In fact, the average of accuracy differences between
p = 0.5 and 1 is 2.18% in three different cases of the data dis-
tribution. Thus, the FedAvg layer leader does not necessarily
receive responses from all subgroups in each aggregation, and
timeout will help the global model converge faster. The IID
data setting gives the best accuracy as in Fig. 6 and the result
shows an accuracy drop in the Non-IID data settings. In case
of IID setting, the accuracy of p = 0.5 is 72.09% after 1000
rounds. On the other hand, the lowest accuracy of 48.69% is
obtained with p = 0.5 and Non-IID (5%) settings.

B. Two-Layer Raft

1) Evaluation Setup: In this evaluation, we execute two-
layer Raft on a single machine as shown in Table I. We
built a simulation environment with a configurable number
of virtual peers. Each virtual peer has its own IP and ID, for
FedAvg/SAC layers to simulate the FedAvg/SAC-layer leader
crash and communicates using TCP on the same machine.
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Fig. 9. Moving average of training loss for a different fraction in 2-Layer
SAC (N = 20, n = 5). The experimental setting is the same as that in Fig.
8.

The tc command [21] is used to simulate network latency.
The delay is 15ms, which is the same as in [6] and [22]. We
also follow [6] to set the timeout parameters as below.

broadcast time� candidate timeout�MTBF

candidate timeout = follower timeout ∼ U(T, 2T )

Here, each peer has its own candidate timeout and follower
timeout, which mean required timeouts to remain a candidate
and a follower without the contact from a leader, respectively.
The peer starts an election when the timeout is over. The mean
time between failures (MTBF) indicates the time that elapses
between failures of a single server and broadcast time is the
average time for a server to simultaneously send RPCs to all
servers in the cluster and receive their responses. U(T, 2T ) is
a value between T and 2T taken from uniform distribution
(T = 50, 100, 150, 200). There are five subgroups each with
five peers (N = 25, n = 5).

2) Recover from A Crashed Subgroup Leader: We show
the time to detect a leader crash and elect a new leader in a
subgroup (Sec. V-A1). We run the simulation 1000 times for
each range of timeout. Here, we have not taken into account
the worst case scenario where the existence of the peer whose
log is outdated. This is because the value updated in the
subgroup log is only the configuration of the FedAvg layer,
which is not large.

Fig. 10 shows the results. As expected, it takes longer to
elect a leader with a larger follower timeout. The average is
214.30ms, 401.04ms, 580.74ms and 749.07ms in case of 50–
100ms, 100–200ms, 150–300ms and 200–400ms, respectively,
which is about twice the maximum follower timeout. This
is because the follower timeout is the time required for the
follower to regard the leader as absent, and the follower cannot
become a candidate until that time has passed. However, if the
follower timeout is too short, it is more likely that followers
will misunderstand the leader’s absence and elections will take
place frequently. In fact, even when a peer become a leader,
its authority was not stable and elections were held repeatedly
in case of 12–24ms.

Fig. 11 shows the time to detect a crashed subgroup leader
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Fig. 10. Time to detect a crashed leader and elect a new leader in a
subgroup. follower timeout for each peer is randomly sampled from a uniform
distribution with four different ranges (in the legend). candidate timeout is set
the same value as follower timeout. Experiments were conducted 1000 times
per each setting.
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Fig. 11. Time to detect a crashed leader, elect a subgroup leader and for
that leader to join the FedAvg group. The experimental setting is the same as
that in Fig. 10.

and for a new leader to join the FedAvg group. Compared to
Fig. 10, the average time takes longer by 122.98ms, 125.8ms,
144.70ms and 166.09ms in case of 50–100ms, 100–200ms,
150–300ms and 200–400ms, respectively. In our system, the
peer is automatically connected to FedAvg layer when elected
as a new subgroup leader. Thus, Fig. 11 shows the similar
trend as in Fig. 10. The difference is that Fig. 11 considers
an additional time required to join the FedAvg layer. The
downtime is still expected to be far less than one round of
federated learning.

3) Recover From A Crashed FedAvg Leader: We confirm
that our system can recover from a crash of the leader of
both FedAvg group and subgroup (Secs. V-A1 and V-B1). The
newly elected subgroup leader is then connected to the FedAvg
group. If a leader has not been elected in the FedAvg group yet,
the subgroup leader has to wait until a FedAvg leader is set.
In this experiment, the subgroup leader checks the presence
of the FedAvg leader every 100ms, and follower timeout is
sampled from an uniform distribution for both the FedAvg
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Fig. 12. Time to detect crashed leaders of both the FedAvg group and
subgroup, elect leaders of both the FedAvg group and subgroup, and for new
subgroup leaders to join the FedAvg group. The experimental setting is the
same as that in Fig. 10.

group and subgroup.
Fig. 12 shows the time to recover the system (i.e., detect

the FedAvg leader crash, elect new leaders of both the FedAvg
group and subgroup and rebuild the FedAvg group with new
subgroup leaders). The average time required is longer than in
the previous case (Fig. 11) : 95.07ms, 114.65ms, 130.30ms and
158.53ms for the four timeout settings, respectively, because
the recovery of the entire network requires longer time than
that of one subgroup. The new subgroup leader has to wait
the completion of an election in the FedAvg group, which
also affects the performance. In this case, the interval can be
set less than 100ms to connect to the FedAvg group faster. The
simulation results indicate that our system ensures sufficient
availability even if the FedAvg leader crashes.

VII. ANALYSIS FOR TWO-LAYER AGGREGATION AND
RAFT

A. Communication Analysis for Two-Layer Aggregation Sys-
tem with n-out-of-n Secret Sharing

The main reason for breaking down the aggregation into
two layers is to reduce the communication cost in a whole
network while keeping the private local model on each peer
secret. One major problem in SAC is its low scalability due
to the O(N2) communication cost, especially 2N(N − 1)|w|,
where N is the number of peers as mentioned in Sec. III-B
and |w| is the size of the model w. On the other hand, the
communication cost of our proposed two-layer aggregation is
reduced. The cost for FedAvg is 2(m − 1)|w|, the one for
broadcasting the FedAvg-aggregated weight to all SAC peers
is m(n − 1)|w| and the cost for SAC of all m subgroups is
m(n2 − 1)|w|, since n peers exchange n − 1 partitions and
then n− 1 followers send a subtotal to the leader. Therefore,
the total communication cost per aggregation is

(mn2 +mn− 2)|w|. (4)

Since the total number of peers in the system is given as N =
nm, a larger number of groups m leads to a smaller group
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Fig. 13. Total communication cost per aggregation with a varying m. We
use the CNN model as described in Fig. 5. Note that FedAvg layer consists
of m subgroup leaders. The total number of peers is fixed to N = 30. N/m
peers are assigned to each subgroup. When remaining N mod m peers exist,
these are distributed to the subgroups as evenly as possible. For instance, in
case of N = 30 and m = 4, the system has four subgroups, two of which
contain eight peers and the others contain seven peers.

size n. As a result, the overall cost is reduced from O(N2) to
O(nN). From the peer’s perspective, the cost is reduced from
O(N) to O(n).

Fig. 13 shows the communication cost per aggregation
under a varying m. Note that the aggregation is simplified to
the standard FedAvg without SAC when m = N , and to the
original one-layer SAC without FedAvg when m = 1. When
m = 6, the communication cost is 7.12Gb, which means the
cost is about one-tenth of that of the one-layer SAC. When m
is greater than 10, some subgroups consist of fewer than three
peers, which means SAC is no longer secure and the backend
raft is not fault tolerant. In case of n = 2, the weight of the
other peer can be easily inferred, meaning that n should be
larger than three. In addition, the communication cost does not
decrease when m ≥ 10 (n ≤ 3).

B. Communication Analysis for Two-Layer Aggregation Sys-
tem with k-out-of-n Secret Sharing

In our fault-tolerant extension of the two-layer SAC (Sec.
IV-C), more shares for peer models are exchanged on the
network. In case of k-out-of-n secret sharing, the cost for the
first exchange of shares (lines 3–9 in Alg. 4) is n(n− 1)(n−
k + 1)|w| and the one for exchanging subtotals (lines 14–16
in Alg. 4) is (k− 1)|w|. The communication cost of SAC per
round is {n(n−1)(n−k+1)+(k−1)}|w|, so the cost for m
subgroups is m{n(n−1)(n−k+1)+(k−1)}|w|. Same as Sec.
VII-A, costs for FedAvg and broadcasting the weight average
from the FedAvg group to all SAC peers are 2(m−1)|w| and
m(n−1)|w|, respectively. Therefore, the total communication
cost per aggregation is

{(n2 − kn+ k)N + km− 2}|w|. (5)

Thus, there is a trade-off between redundancy and communica-
tion cost. While the communication cost for SAC (k-out-of-n)
is greater than that of the n-out-of-n case (Sec. VII-A), the
entire cost is still much smaller than the one-layer SAC thanks
to the two-layer approach.

Fig. 14 compares the communication costs for different
combinations of k and n. Compared to the baseline (green),
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Fig. 14. Total communication cost per aggregation under various k-n settings.
We use the CNN model as described in Fig. 5. Each subgroup consists of
n = 3, 5, N peers, and is operational as long as k peers are alive. k-n refers
to our proposed two-layer SAC with k-out-of-n secret sharing scheme; in the
3-5 setting, the system consists of five peers per subgroup, and each subgroup
can perform the aggregation as long as k = 3 peers are alive. The n = N
case is for the original one-layer aggregation (Alg. 2).

the proposed system offers greater communication efficiency
with an increasing N . For instance, it is 8.84x and 14.75x more
efficient in case of n, k,N = 3, 3, 20 and 3, 3, 30. While the
fault-tolerant version (e.g., n, k = (3, 2), (5, 3)) requires more
communication, the total cost is still smaller than the baseline.
For instance, it is still 10.36x and 4.29x more efficient in case
of n, k,N = 3, 2, 30 and n, k,N = 5, 3, 30. Our method can
reduce the communication cost by a factor of 20 with a larger
number of peers (especially for N = 50) although it is omitted
in this figure. The aggregation cost is 196.13Gb in the baseline
(n = N = 50), which is brought down to 8.24Gb in our
method (n, k,N = 3, 3, 50), leading to a 23.80x improvement.
Considering that our method achieves accuracy on par with
the baseline as seen in Fig. 6, our method greatly improves
the communication efficiency. Our system also allows flexible
choices of both k and n to strike the best balance between
communication efficiency and fault tolerance.

C. Communication Analysis for Multi-Layer Aggregation Sys-
tem

Here, we analyze the cost of multi-layer aggregation in the
n-out-of-n case. For simplicity, the follower in an x-th layer
subgroup becomes a leader in the x + 1-th layer, but cannot
become a leader in the x + 2-th layer except that the leader
of the topmost layer serves as the one of the second layer
as well. Note that we assume each subgroup has the same
number of peers n and SAC is used across all the layers. The
total number of peers N in this X-layer aggregation system
is

N =

X∑
k=1

n(n− 1)k−1. (6)

The communication cost for each aggregation is (n2 − 1)|w|
and the number of aggregations in all layers is

∑X−1
k=1 n(n−

1)k−1+1. The communication cost for distributing aggregated



models is also (N − 1)|w|, so the total communication cost
Ctotal is derived as

Ctotal = (n2 − 1){
X−1∑
k=1

n(n− 1)k−1 + 1}|w|

+ (N − 1)|w|
(7)

= (n+ 1){n
X−1∑
k=1

(n− 1)k + (n− 1)}|w|

+ (N − 1)|w|
(8)

= [(n+ 1){(N − n) + (n− 1)}+ (N − 1)]|w| (9)
= (N − 1)(n+ 2)|w|. (10)

Therefore, even if SAC is used in all layers including the
topmost layer, the communication complexity is still O(nN).
When n becomes smaller as the number of layers increases,
the communication complexity approaches to O(N). The
communication complexity will be further reduced if other
aggregation methods with less communication like FedAvg
are used instead of SAC.

D. Fault Tolerance Analysis for Two-Layer Raft

In this section, we briefly analyze the security threshold for
two-layer Raft consensus in comparison with the original one.
In the original Raft, the cluster is available when the majority
of servers is running, so FedAvg layer and each subgroup
in SAC layer tolerate up to bn−12 c and bm−12 c peers’ crashes
respectively. Our system tolerates at most m(bn−12 c+1) faulty
peers in the optimistic case where all leaders in subgroups are
operational and only the followers may crash. On the other
hand, our system cannot operate if bm−12 c subgroup leaders
(i.e., members of the FedAvg layer) crash at the same time. In
our system, when the subgroup leader crashes, a new subgroup
leader is added to FedAvg layer as a follower as described in
Sec. V-A1. In this case, the number of peers in FedAvg layer is
increased by one through cluster membership change protocol
in Raft. The quorum for FedAvg layer increases as well.

VIII. CONCLUSION

In this paper, we proposed a scalable, secure and fault
tolerant aggregation system for P2P FL. By dividing the
system into a two-layer network and leveraging the benefits of
SAC and FedAvg, our two-layer aggregation system was able
to both provide privacy protection of peers and reduce the
total communication cost per aggregation. We also proposed
a fault tolerant version of the two-layer SAC to handle the
random peer dropouts during aggregation. As a backend of the
two-layer aggregation system, our two-layer Raft successfully
enhances fault tolerance in case of the aggregation leader
crashes. Experimental results demonstrate that our proposed
system outperforms SAC in terms of the communication cost
and fault tolerance with the comparable accuracy. For example,
with 30 peers, we have achieved a 10.36x communication
cost reduction. We also showed that slow subgroups do not
affect the overall accuracy. Our two-layer Raft maintained
availability by quickly detecting a crashed leader and replacing
it with a new one in various cases. Finally, we discussed

aggregation costs when the system is scaled to multiple layers,
and the minimum number of peers to maintain consensus in
the two-layer Raft.
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