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Abstract—3D LiDAR SLAM (Simultaneous Localization And
Mapping) is utilized for autonomous driving and autonomous
mobile robots. When compute resources on an edge device are
limited, SLAM is executed by using the edge and server cooper-
atively. In this paper, we propose an edge-server cooperative 3D
LiDAR SLAM based on the state-of-the-art method, LIO-SAM.
In the edge-server cooperative SLAM, data transfer between
them imposes an overhead. We partition the LIO-SAM method to
reduce the data transfer while meeting the time constraints; the
edge part transfers a set of feature points instead of a raw LiDAR
scan, and the server handles the other parts. Moreover, the
edge tasks are accelerated by an FPGA implementation to meet
an execution time constraint on the edge side. Specifically, we
implement a point cloud deskew on the FPGA. Average execution
time on the edge side is accelerated up by 1.63 to 1.73 times.
Furthermore, all the LiDAR scans are processed within 100ms
which is the execution time constraint on the edge side based on
10Hz LiDAR frequency. We also evaluate the data transfer size
and the execution time in detail.

Index Terms—3D LiDAR SLAM, LIO-SAM, Edge computing,
FPGA

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a fun-
damenal technology that is important for mobile robots and
autonomous driving cars. SLAM is categorized into two types:
Visual SLAM and LiDAR SLAM. Visual SLAM uses RGB
camera or RGBD camera as a main external sensor, and uses
camera images to estimate the location of a robot. On the other
hand, the latter uses LiDAR (Light Detection and Ranging)
as a main sensor. LiDAR is a sensor that measures distances
between the sensor and objects based on the time-of-flight
principle. One advantage of LiDAR sensors is that, an error
of distance between a sensor and an object is small and enables
high accuracy than Visual SLAM. The LiDAR SLAM systems
also have several other advantages. The LiDAR sensors can
acquire range data directly and have a 360-degree field of
view unlike the cameras. They are unaffected by the lighting
due to the use of the lasers. The point clouds acquired from
the LiDARs are less blurred, unlike the out of focus images
captured from the cameras.

LIO-SAM [1] is a state-of-the-art 3D LiDAR SLAM algo-
rithm based on the famous LOAM [2] algorithm and we use
it as a target SLAM algorithm since it achieves high accuracy
and better realtime performance compared to the other LOAM-
based methods, e.g., LeGO-LOAM [3] and LIOM [4], by
incorporating graph optimization and loop closure. LOAM has
high accuracy and realtime performance to a certain extent.
However, accuracy of LOAM is likely to decrease due to
an absence of graph optimization and loop closure, which

reduce the cumulative errors and are important for long-term
operations.

3D LiDAR SLAM algorithms including LIO-SAM involve
point cloud registration which is a function for finding a trans-
formation between two point clouds. Accuracy of the regis-
tration significantly affects performance of SLAM. LIO-SAM
optimizes the transformation using the Levenberg-Marquardt
method. A rich compute resource is needed to cope with the
heavy calculation cost and execute this optimization process
in realtime. If a rich compute resource is needed on the
edge side, the size, price, and power consumption of edge
devices become problems. SLAM systems can be executed
on edge devices and on servers cooperatively to avoid these
problems. Those such as [5] and [6] execute computationally
expensive processes such as global map optimization on the
server. In this paper, we propose an edge-server cooperative
3D LiDAR SLAM based on LIO-SAM as shown in Figure
1. This approach also has the advantage that multiple SLAM
processes and other tasks such as path planning and object
recognition can be executed together on the same server.

Fig. 1. Edge-server cooperative LIO-SAM

By using FPGAs as an edge device it is possible to im-
prove the memory utilization and execution time. There exist
numerous studies that employ FPGAs to accelerate various
robotic tasks and improve the overall performance. The point
cloud registration is a computationally expensive process, so
it is effective to accelerate the registration by FPGA for
realtime performance. For example, implementing Correlative
Scan Matching (CSM) [7] on an FPGA makes three types of
2D LiDAR SLAM faster without reducing accuracy [8]. Not
only 2D LiDAR based but also 3D LiDAR based SLAM is
accelerated by FPGAs. In [9], 3D LiDAR based SLAM is
accelerated for embedded robotics. They implement the point
cloud registration and map update on an FPGA, and accelerate
these processes by running in parallel and in a pipelined
manner. In [10], K-Nearest-Neighbor search (KNN) for 3D
LiDAR SLAM is accelerated for smart vehicles. P3Net [11]
is a PointNet-based 2D and 3D path planning for FPGAs, and
PointNet [12] is accelerated by the FPGA implementation.

The data transfer becomes a major bottleneck when the raw



LiDAR point clouds are sent to the server without prepro-
cessing, because LiDAR sensor obtains 105 to 106 points per
second and the data size of the point clouds becomes very
large and requires a high network bandwidth. It is important
to reduce the data transfer by processing the point cloud data
in the edge device. In this paper, we partition LIO-SAM nodes
1 to the edge and the server to reduce the data transfer. Another
important point on the edge-server cooperative 3D LiDAR
SLAM is that the process on the edge devices should meet
the realtime constraint to stabilize the SLAM system. In this
paper, in addition to partitioning LIO-SAM based on the data
transfer size, we accelerate the edge process by offloading the
point cloud deskew process onto FPGA.

The rest of this paper is organized as follows. Section II
overviews SLAM and LIO-SAM. Section III proposes the
edge-server partitioning of LIO-SAM to reduce the data trans-
fer, and accelerates the edge process by FPGA implementation.
Section IV describes details of the FPGA implementation.
Section V evaluates the proposed approach in terms of the
data transfer size and the execution time. Finally, Section VI
concludes this paper and mentions future work.

II. PRELIMINARIES

A. SLAM Overview

Point cloud registration is one of the most important process
in LiDAR SLAM and affects the performance of SLAM. The
registration finds a relative pose which consists of relative
translation and rotation between two point clouds. There are
various point cloud registration algorithms, such as the famous
ICP [13] and NDT [14]. ICP is an iterative method which
alternates between two processes, associating two point clouds
and updating the pose. Point cloud poses are updated to
minimize the squared distances between matched points by
using optimization methods such as the Newton’s method, the
Gauss-Newton method, and the Levenberg-Marquardt method.

LiDAR odometry is a process to estimate the robot poses
using a sequence of LiDAR scans. There are other types of
odometry. For example, IMU odometry calculates the pose
from acceleration and angular velocity data from Inertial
Measurement Unit (IMU), and wheel odometry calculates the
posture from the rotation angles of wheels.

The software implementations of many LiDAR SLAM
algorithms, e.g., LOAM [2], are publicly available. These
implementations are distributed in the form of ROS packages.
ROS is a famous software platform for robots. Our proposed
method is also based on ROS. In LOAM, odometry and
mapping are implemented in a separate module, i.e., ROS
node. Odometry is executed at a high operating frequency
and mapping is executed at a low frequency. Realtime per-
formance and accuracy of LOAM are relatively high due to
this separated design. However, accuracy of LOAM decreases
in a long-term operation because LOAM does not employ
graph optimization and loop closures and thus accumulates
errors. Various LOAM-based methods have been proposed in
the literature to address this issue, such as LeGO-LOAM [3],

1The ROS node is a process launched in the Robot Operating System (ROS)
environment that performs a specific task and communicates with other nodes
via messages.

LIOM [4], and LIO-SAM [1]. LeGO-LOAM is a lightweight
and ground optimized SLAM for ground vehicles. In LeGO-
LOAM, a pose estimation process is separated into two parts:
registration using the ground features and one using the
other features. LeGO-LOAM also introduces loop closures and
graph optimization. LIOM processes all the sensor data from
LiDAR and IMU to achieve high accuracy at the expense
of low realtime performance. Compared to that, LIO-SAM
achieves both high realtime performance and accuracy. LIO-
SAM introduces efficient optimization by introducing a factor
graph, which incorporates LiDAR, IMU, and GPS data, and an
efficient registration method. Optimization based on the factor
graph is formulated as a maximum a posteriori problem.

Systems such as CT-ICP [15] and ELO [16] can efficiently
estimate accurate LiDAR odometry which use only LiDAR
sensors as an external sensor. Such SLAM systems tend to
be less accurate than those using multiple sensors, such as
LIO-SAM. There exist deep learning based 3D LiDAR SLAM
systems, such as LO-Net [17]. It achieves a performance
comparable to LOAM in terms of accuracy and realtime per-
formance. However, the deep learning based SLAM generally
has a challenge to versatility. It requires a large amount of
training data and is difficult to achieve high accuracy in a new
location which is not similar to the training data.

Many 3D LiDAR SLAM implementations, such as LOAM
[2] and LIO-SAM [1], assume the use of mechanical rotating
LiDARs as shown in Figure 2. A rotating LiDAR consists of
multiple laser sensors positioned at equally spaced elevation
angles, and obtains a scan data composed of all direction
points by rotating these sensors. Points obtained from a single
sensor is called ring and they have the same elevation angle.
Let θ and R denote the resolution of azimuth angles and the
number of rings, respectively. The maximum number of the
points in one scan is 2πR

θ . In practice, the number of the
points in one scan is smaller than this number, because laser
reflections are not detected when there is no object or there is
a specific material object in laser direction. There exist other
types of LiDAR sensors, such as solid-state LiDARs. LiLi-OM
[18], which can utilize a solid-state LiDAR as a main sensor,
is a state-of-the-art 3D LiDAR inertial SLAM algorithm in
terms of accuracy and execution time.

Fig. 2. The 3D LiDAR

Scans obtained from rotating LiDARs often need to be
deskewed using the data acquired from the other sensors such
as IMU, since the robot moves when acquiring scans. This
point cloud deskewing is a process of correcting distortion
of the point cloud. If data is not deskewed, accuracy of



Fig. 3. The LIO-SAM nodes

localization inference is likely to degrade because of the
incorrect registration results. In LIO-SAM, the point cloud
deskew is performed by correcting the rotation angle and
position at each scan point.

B. LIO-SAM Algorithm

This section describes the LIO-SAM. Figure 3 shows the
ROS nodes along with their tasks in the LIO-SAM imple-
mentation. The Play node plays a bag file composed of the
LiDAR, IMU, and GPS data and publishes these sensor data
to the Image [a], IMU [b] and Map nodes. The Rviz node
visualizes results of localization and mapping.

LiDAR odometry TLiDAR ∈ SE(3) is represented as
TLiDAR = [RLiDAR|pLiDAR] where RLiDAR is a rotation
matrix and pLiDAR is a position vector. IMU odometry as
TIMU ∈ SE(3) is represented in the same manner. RLiDAR

is a matrix based on the rotation angles rLiDAR.
1) Imu node: The Imu node holds IMU odometry data

TIMU and an IMU bias b. The Imu node receives IMU data
(acceleration and angular velocity data) from the Play node [b]
at an IMU frequency and LiDAR odometry from the Map node
[g] at an LiDAR frequency. Main roles of the Imu node are
odometry (TIMU) estimation and IMU bias (b) estimation. The
IMU bias b affects sensor values and needs to be corrected.
The odometry estimation is performed by a combination of
local factor graph optimization and the latest IMU data. This
factor graph is composed of the LiDAR odometry TLiDAR

and the IMU odometry TIMU, and this graph optimization is
done when IMU node receives the LiDAR odometry TLiDAR

from Map node. After a certain amount of time, the factor
graph is reset because the factor graph grows with time. The
optimization result and IMU data are combined, and this
process realizes realtime (IMU frequency) odometry TIMU.
This realtime odometry TIMU is published to the Image [c]
and Rviz nodes [d] at the IMU frequency.

2) Image node: The Image node receives a raw point cloud
P and the IMU data from the Play node [a]. This node also
receives the IMU odometry TIMU from the IMU node [c].
There are two main roles in the Image node. First, the Image
node sets an initial position Tini for point cloud registration
in the Map node. This leads to the faster convergence of the
registration because the initial estimate Tini is sufficiently
close to the global optimum. Second, the Image node deskews

Algorithm 1 The funtion including the point cloud deskew

Input: Point cloud P , IMU rotation angles Rimu, IMU times Timu, and
odometry change oinc

Output: Deskewed point cloud Pdeskewed, ranges from the LiDAR to points
D, and column numbers Ncol

1: Minv[4][4] ← An inverse matrix of an initial LiDAR pose computed
from P , Rimu, and oinc

2: tstart ← a time of the first point of P
3: tend ← a time of the end point of P
4: for i← 0, . . . , 28800 do
5: if i ≥ size of P then
6: continue
7: end if
8: p← the i-th point of P
9: d← a range of p from the LiDAR

10: idrow ← a ring of p
11: idcol ← a column number calculated from p and idrow
12: if the position of p is the outside of the matrix ∥ the position on the

matrix is the same as another point then
13: continue
14: end if
15: The i-th element of Pdeskewed ← a deskewed point computed from

p, Rimu, Timu, oinc, tstart, tend, and Minv
16: The i-th element of D ← d
17: The i-th element of Ncol ← idcol
18: end for

Algorithm 2 Point deskew

Input: p, Rimu, Timu, oinc, tstart, tend, and Minv
Output: A deskewed point pdeskewed
1: tLiDAR ← a time of the point
2: tIMUb

← an IMU time just before tLiDAR
3: tIMUa ← an IMU time just after tLiDAR
4: rIMUb

← IMU rotation angles at tIMUb
from Rimu

5: rIMUa ← IMU rotation angles at tIMUa from Rimu
6: rLiDAR[3] ← rotation angles of the LiDAR at tp calculated from p,

tLiDAR, rIMUb
, rIMUa , tIMUb

, and tIMUa

7: pLiDAR[3] ← a position of the LiDAR at tLiDAR calculated from p,
tLiDAR, tstart, tend, and oinc

8: A[4][4]← a matrix of the absolute LiDAR pose
9: B[4][4]← Minv ∗A ▷ a matrix of the relative LiDAR pose

10: pdeskewed ← B0:3,0:3p+B0:3,3

valid points within one scan and arranges these points in
order. Algorithms for the function for the point cloud deskew
are described in Algorithms 1 and 2. Algorithm 1 describes
the function for deskewing all the points, and Algorithm 2
describes the funtion only for deskewing each point. Figure 4
shows a flowchart of the point cloud deskew. The next point
is deskewed after its range d from the sensor and its column
number idcol are calculated (Algorithm 1, lines 9 and 11). This



Fig. 4. A point cloud deskew flowchart

range d is used to calculate a curvature for feature extraction in
Feature node. The column number idcol represents the position
of the point within one ring. A sorted point cloud within a
scan is formed based on this column number idcol and the ring
number idrow. Without this sorted point cloud, the point cloud
registration and the feature extraction cannot be executed.

In the deskew process, the changes in the sensor rotation
angles rLiDAR and translation pLiDAR relative to the start of a
scan need to be computed for each point p. The sensor rotation
angles rLiDAR around the x-, y-, and z-axis are calculated
by linear interpolation of IMU rotation angles (Algorithm 2,
line 6). For example, a rotation angle around the x-axis θx(=

Fig. 5. Linear interpolation for the rotation angle around the x-axis

rLiDAR[0]) is calculated as shown in Figure 5 and as follows
(Algorithm 2, lines 1 - 6).

tb = tLiDAR − tIMUb

ta = tIMUa
− tLiDAR

θx =
θxb

ta + θxa
tb

ta + tb
,

(1)

where tLiDAR is the LiDAR timestamp when a point p
is obtained. tIMUb

and tIMUa
are the timestamps of two

consecutive IMU data which are acquired right before and
after the point is obtained, i.e., tIMUa

≤ tLiDAR ≤ tIMUb

(Algorithm 2, lines 2 and 3). The sensor translation changes
oinc are calculated by multiplying the odometry change while
obtaining one scan by the ratio of the elapsed time within the
scan. A translational change in the x-axis direction xtrans is
calculated as shown in Figure 6 and as follows (Algorithm 2,
line 7).

r = tLiDAR/(tend − tstart)

xtrans = r × xinc,
(2)

Fig. 6. Linear interpolation for the position in the x-axis direction

where tstart and tend are timestamps at which the scan
acquisition started and finished. r is the ratio of the elapsed
time and xinc is the odometry change while acquiring the scan.
xinc (= oinc[0]) is based on the two IMU odometry values
at tstart and tend. This odometry change is calculated from
the odometry data from the Imu node. The point is moved
based on the rotation angles and the translation changes to
deskew the point. A series of these processes is performed
for all points in the LiDAR scan. Deskewing the point cloud
contributes to the highly accurate localization and mapping.
The point cloud deskew is the most expensive process in the
Image node. The deskewed point cloud is arranged in order
and published to the Feature node [e].

3) Feature node: The Feature node retrieves a point cloud
from the Image node [e] and extracts features for each point.
The features are classified into two types, edge features and
planar features. Points with large curvature are extracted as
the edge features. The curvature is calculated simply based
on the point distance from the sensor. The remaining points
are downsampled and extracted as the planar features. These
features are published to the Map node [f].

4) Map node: The Map node is executed when it receives
feature data from the Feature node [f]. Main roles of the
Map node are point cloud registration and global optimization
using a factor graph. Point cloud registration matches the
edge and planar features received from the Feature node to
each voxel map. These voxel maps are generated by merging
multiple preceding scan data and downsampling this merged
point cloud. This registration uses the initial location value
from the Image node for efficiency. Nearby points from an
input point are extracted by KNN and a corresponding edge
or plane is generated from these points. The distance of each
input point to the corresponding edge or plane is calculated.
The sum of the edge distance and the plane distance is used
as an objective function as follows.

min
T

{∑
pe
i

dei +
∑
pp
i

dpi

}
, (3)

where T is a transformation matrix from LiDAR coordinate
system to map coordinate system. pei is the i-th edge feature
and dei is the distance from pei to the corresponding edge.
ppi is the i-th planar feature and dpi is also the the distance
from ppi to the corresponding plane. The position of the point
cloud is updated to minimize this objective function by using
the Levenberg-Marquardt algorithm. This process is repeated
until convergence. The point cloud along with its position is
published to the Map node.

The global optimization using a factor graph is executed in



the Map node. The factor graph is composed of LiDAR odom-
etry factors, GPS factors, and loop closure factors. LiDAR
odometry factors are based on the relative poses between two
scans next to each other. GPS factors are based on the absolute
location value of GPS. Loop closure factors are based on the
loop closure when a robot returns to the previously visited
area. The odometry from this optimization is more accurate
than that from the graph optimization in the Imu node. The
odometry computed from this optimization is published to the
Imu node [g] and the Rviz node [h]. The features are also
published to the Rviz node [h].

III. PROPOSED METHOD

In this section, we propose a partitioning method of LIO-
SAM for edge devices and a single server. Moreover, the edge
process is accelerated by FPGA to satisfy a realtime constraint.

Fig. 7. Proposed edge-server cooperative 3D LiDAR SLAM system

A. Edge-Server Partitioning of LIO-SAM

First, we measure an execution time of Map node on an
edge device. In this paper, Xilinx ZCU104 board is used as
an edge device (the device specification is described in Section
IV). The execution times of Map node range from 500ms to
2500ms. Given that LIO-SAM runs in a 10Hz interval, Map
node process is too computationally expensive to be executed
in the edge device, and hence should be offloaded to the server.
Thus, we need to consider an edge-server cooperative LIO-
SAM. In the edge-server cooperative SLAM, data transfer
between them is an overhead because a large amount of sensor
data should be transferred at high frequency. Reducing the
data transfer can alleviate the demands for a high network
bandwidth and also a power consumption, which are important
for battery-powered edge devices.

We consider several partitioning schemes based on the data
transfer size as shown in Figure 3. The data transfer of the
edge-server cooperative LIO-SAM consists of point clouds
from a 3D LiDAR and IMU data. The size of the point clouds
is especially large and the point cloud size needs to be reduced.
The feature extraction performed in the Feature node greatly
reduces the number of the points, since only a small set of
points with salient features are selected and the other points
are discarded. We propose to partition the LIO-SAM nodes
between Feature node and Map node as shown in Figure 7
and Case 3 of Figure 3. That is, only Map node and Rviz
node are executed on the server side. Another benefit of this
partitioning scheme is that it does not need to transfer IMU
data to the server, which is produced at a high rate of around
500Hz. The advantage of this partitioning method in terms of
the data transfer size is evaluated in Section V-C. Specifically,

three partitioning cases will be evaluated. In the first case of
Figure 3 (Case 1), the edge device transfers raw sensor data to
the server, i.e., the server runs the entire LIO-SAM algorithm
and the edge device waits for the completion. In the second
case (Case 2), the edge device is in charge of running Image
and IMU nodes, and transfers the deskewed LiDAR scans to
the server. The third case (Case 3) is the proposed method,
where the edge device runs Image, Imu, and Feature node,
and transfers the feature points to the server.

B. FPGA Acceleration of Edge Process

As shown in Figure 7, the Play node, Imu node, Image node,
and Feature node are executed in the edge device. Among
these nodes, the Image node and the Feature node take a
relatively long time and a route from the Play node to the
Feature node via the Image node is a critical path. The LiDAR
frequency is set to 10Hz which is the same as the LiDAR
scan rate. Given that the Image node and the Feature node are
executed in sequence, the total execution time of the Image
node and the Feature node must be less than 100ms. IMU
execution time is negligible and is run concurrently with the
other nodes. It tends to take more than 100ms for the Imu
node to receive the LiDAR odometry data from the Map node,
but this is not a problem in this paper because it has almost
no negative effect on the localization accuracy and the edge
execution time. The Imu node can execute accurate realtime
localization.

In the edge side, a function for the point cloud deskew in
the Image node takes a long time. This function accounts for
approximately a half of the execution time on the edge side.
Thus, we offload this task to the FPGA fabric to accelerate
the edge process. The resultant system is illustrated in Figure
7. In LIO-SAM, a point cloud is deskewed by correcting each
point by the amount of sensor pose changes. As mentioned
in Section II, the sensor pose changes are calculated from the
IMU rotation angles, the odometry, and the timestamps. Each
point deskew can be executed independently and thus exhibits
a high degree of parallelism. The point deskew processes can
be parallelized and pipelined by offloading it to FPGA as
shown in Figure 8.

Fig. 8. Parallelism and pipeline of the point cloud deskew

IV. FPGA IMPLEMENTATION

This section describes the FPGA implementation of the
point cloud deskew process in detail. We use Xilinx ZCU104
Evaluation Kit (Zynq UltraScale+ MPSoC) as an edge device.
Xilinx ZCU104 integrates programmable logic, a quad-core



ARM Cortex-A53 CPU, and 2GB DRAM. Pynq Linux 2.7
based on Ubuntu 20.04 is running on the board. The clock
frequency of FPGA is set to 100MHz. We use Xilinx Vi-
tis HLS 2020.2 and Vivado 2020.2 for logic synthesis and
place-and-route. The deskew process is implemented on the
programmable logic, and the other edge processes are on the
ARM Cortex-A53 CPU.

Fig. 9. Board level implementation (Xilinx ZCU104 Evaluation Kit)

As shown in Figure 9, a point cloud deskew core and a
DMA controller are implemented on Zynq PL (Programmable
Logic). The processes before the point cloud deskew are
executed on Zynq PS (Processing System), and the point cloud
deskew is executed on Zynq PL. The input data including the
point clouds and the IMU data is transferred from PL to PS via
AXI4-Stream for a fast data transfer. The output data including
the deskewed point cloud is sent back from PL to PS. This
data is utilized in subsequence processes (e.g., point cloud
registration). As mentioned in Section III-B, the point cloud
deskew is parallelized and pipelined as shown in Figure 8. The
degree of parallelization is set to eight, i.e., eight points are
deskewed in parallel, the latency between the preceding and
following parallel processes is 0.18µs.

In this paper, we use an implementation of LIO-SAM 2

from the authors of [1], but modify the point cloud deskew
function to use our custom FPGA-based accelerator. The
point data type is changed to contain xyz coordinates, a
ring number, and a timestamp for reducing unnecessary data
transfer and resource consumption. Processes that are difficult
to be implemented on PL part in the function for the deskew
are left to PS part.

V. EVALUATIONS

In this section, we evaluate the proposed edge-server coop-
erative 3D LiDAR SLAM based on the FPGA implementation
in terms of FPGA resource utilization, data transfer size, exe-
cution time of the edge process, and execution time including
communication time.

A. Dataset
We use three datasets which are used in the evaluation

of LIO-SAM [1]. These datasets contain point cloud from a
Velodyne VLP-16 LiDAR, acceleration and angular velocity
from a MicroStrain 3DM-GX5-25 IMU, and absolute location
from a Reach M GPS. The number of channels of Velodyne
VLP-16 is 16, and the number of the points within on ring is
1800. The maximum point cloud size in one scan is 28800 (16
× 1800). These datasets are named Walking Dataset, Campus

2https://github.com/TixiaoShan/LIO-SAM

Dataset, and Park Dataset. The details about the datasets are
summarized in Table I.

TABLE I
DETAILS ABOUT DATASETS

Dataset Scans Elevation
change (m)

Trajectory
length (m)

Max rotation
speed (°/s)

Walking 6502 0.3 801 133.7
Campus 9865 1.0 1437 124.8

Park 24691 19.0 2898 217.4

B. FPGA Resource Utilization
FPGA resource utilization for the implementation of the

point cloud deskew is shown in Table II. As shown, the
utilization is less than 50% of the total resources available
on Xilinx ZCU104 board for all the primitives. The results
indicate the following three possibilities. First, we can use a
higher resolution 3D LiDAR which produces LiDAR scans
with more points. The number of channels assumed in this
evaluation is 16, and there are finer-grained 3D LiDARs that
have 32 or 64 channels. Second, we can consider further
acceleration by implementing more processes on FPGA. For
example, we can accelerate feature extraction in the Feature
node by FPGA. However, the FPGA acceleration of feature
extraction is not effective to reduce execution time, because it
does not take a time as much time as the point cloud deskew.
Third, it is possible to increase the number of data transfer
ports between PS and PL parts for further acceleration because
data transfer time between them accounts for about 80% of
execution times on FPGA.

TABLE II
FPGA RESOURCE UTILIZATION (AFTER PLACE AND ROUTE)

BRAM URAM DSP FF LUT
Total 71.5 40 327 53687 56242
Available 312 96 1728 460800 230400
Utilization 22.92% 41.67% 18.92% 11.65% 24.41%

C. Data Transfer Size
This section evaluates the data transfer size for three par-

titioning schemes. Specifically, we evaluate three partitioning
cases shown in Figure 3. We take point clouds and IMU data
into account for this data transfer size evaluation. The data
sizes are calculated by taking the average of 6000 to 25000
scan processes in each dataset.

Table III shows data transfer sizes of the three partitioning
cases for the Walking Dataset. The data transfer size of Case 2
is 1.02 times larger than that of Case 1 because the number of
points is almost equal but data size for each point is increased
by transferring new data, such as its range and its column
number. This means that executing the Image node and Imu
node in the edge while executing the Feature node in the
server is not as effective. The data transfer size of Case 3
(our proposal) is 6.67 times smaller than that of Case 1. Case
3 reduces the data transfer significantly because the number
of the points is reduced to about one-fourth by the feature
extraction. Case 3 also eliminates the need to send IMU data
to the server. These results demonstrate that the Feature node
should be executed in the edge by considering the data transfer
size for the edge-server cooperative LIO-SAM.

The data transfer size of Case 3 for the three datasets
are shown in Table IV. The significant data transfer size



TABLE III
DATA TRANSFER SIZE OF WALKING DATASET

Partitioning
method

Points
(Mbps)

IMU
(Mbps)

Total
(Mbps)

Comparison
with Case 1

Case 1 38.39 1.38 39.77 1.0
Case 2 40.49 0.0 40.49 1.02
Case 3 5.90 0.0 5.90 0.15

reduction is observed in all the datasets, and the data transfer
is reduced by at least a quarter. Reducing data transfer can
relax a network constraint for realtime SLAM, and reduce the
communication fee and the energy consumption.

TABLE IV
DATA TRANSFER SIZE OF THREE DATASETS

Dataset Case 3 data transfer
size (Mbps)

Comparison
with Case 1

Walking 5.90 0.15
Campus 7.64 0.23

Park 7.23 0.18

D. Execution Time with FPGA Acceleration
LiDAR frequency is set to 10Hz which is a typical value

in LiDAR SLAM; in this case, the execution time of the edge
should not exceed 100ms. We assume that the execution time
on the edge side is a sum of execution times of Image node and
Feature node which process the LiDAR scans. The execution
times of the Imu node are small enough to be ignored.

The execution time on the edge side of each point cloud scan
for Walking Dataset is shown in Figure 10. The orange and
blue bars represent execution times with and without FPGA
acceleration. A few scan data exceeds the 100ms constraint
and an average execution time becomes larger when the FPGA
acceleration is not applied. By implementing the point cloud
deskew on the FPGA, all the scans are processed within
100ms (i.e., the SLAM process does not violate the realtime
constraint) and scan processes become faster as a result.
Please note that not many scans exceed the 100ms constraint
without the FPGA acceleration, and these scans may not affect
SLAM performance significantly in this dataset. However, it
is important not to lose scan data especially when the sensor
is moving fast and the environmental map is changing rapidly.
When a higher resolution LiDAR is used, the execution times
on the edge side become longer. In this case, it is more likely
to violate the 100ms constraint, and the benefit of the FPGA
acceleration increases.

Tables V and VI show the execution times on the edge
side with and without the FPGA acceleration. Table V shows
execution times of the point cloud deskew, and Table VI shows
that of the entire edge process. Figure 11 shows a histogram of
the execution time on the edge side. As shown in Table V, the
execution time of the point cloud deskew which accounted for
approximately half of the edge execution time is reduced to
7.07ms. The FPGA implementation of the point cloud deskew
is 3.46 to 4.31 times faster than the software execution on
average. It is up to 10.02-13.23 times faster than the software
counterpart. As shown in Table VI, an entire execution time on
the edge side is 1.63 to 1.73 times shorter than that without the
FPGA acceleration on average. The worst case (the maximum)
execution time is also reduced from over 100ms to within
100ms. That is, the execution time constraint on the edge side
is met by the proposed FPGA acceleration.

Fig. 10. The distribution of the execution time in Walking Dataset

TABLE V
EXECUTION TIME OF THE POINT CLOUD DESKEW (MS)

Dataset Average,
standard deviation Maximum With FPGA

Walking 30.03± 10.15 81.23 7.07
Campus 24.43± 8.14 70.86 7.07

Park 30.48± 10.58 93.58 7.07

TABLE VI
AVERAGE AND MAXIMUM EXECUTION TIME ON THE EDGE SIDE (MS)

Dataset Average
w/o FPGA

Average
w/ FPGA

Maximum
w/o FPGA

Maximum
w/ FPGA

Walking 54.72 31.76 147.51 80.27
Campus 45.00 27.64 109.73 67.76

Park 55.69 32.28 138.91 83.80

Fig. 11. Average and maximum execution times on the edge side

E. Execution Time Including Communication Overhead

In this section, we evaluate the total execution time of edge
process including the data transfer from/to the server. This
total time is a sum of execution times of the Image node,
the Feature node, and the communication overhead estimated
from the given network bandwidth. The execution time of the
Map node on the server is not considered in this evaluation
as it only accounts for a negligible part of the total execution
time. If the edge-server cooperative SLAM can use an ideal



network and the communication time is negligible, we do not
have to consider the communication overhead. However, when
multiple SLAM systems work or the network bandwidth is
narrow, the communication time increases.

Figure 12 shows the total execution time including the
communication time at various bandwidths. As shown in Table
III, Case 1 transfers a raw point cloud to the server, and thus
the communication time is larger than that of Case 3. Case 1 is
the best method in terms of the execution time if the network
bandwidth is sufficiently high. However, the benefit of Case 3
increases when the bandwidth is narrow as shown in Figure 12.
In Case 3 without the FPGA acceleration, the proposed edge-
server cooperative SLAM is beneficial if a network bandwidth
is less than 67.85Mbps. In the case of the FPGA acceleration,
the proposed method is beneficial if a network bandwidth is
less than 125.63Mbps.

Fig. 12. Total time of the Image node, the Feature node, and the communi-
cation in Walking Dataset

VI. SUMMARY

It is a challenging problem to meet the realtime constraint
of SLAM algorithms due to their high computational cost
when executed solely on the edge devices. In this paper,
we proposed an edge-server cooperative 3D LiDAR SLAM
based on the state-of-the-art method, LIO-SAM. Our proposed
method reduces the computational complexity on the edge
side, thereby allowing to run multiple SLAM instances or
the other tasks such as path planning on a single server. We
partitioned tasks in the LIO-SAM to the edge and server so
that the data transfer between them is reduced. In this paper,
we adopted a partitioning strategy, where the edge device
performs the feature extraction and the server performs a
global optimization. By only transferring a subset of points
with salient features to the server, the amount of data transfer
is reduced by 4.35 to 6.67 times compared to transferring the
raw LiDAR scans. Moreover, we accelerate the edge process
by offloading the point cloud deskew to the programmable
logic part of the Xilinx ZCU104 board. The execution time
of the edge process with the proposed FPGA accelerator is
1.63 to 1.73 times shorter than without FPGA. Furthermore,
the execution times of all the scans are reduced to less than

100ms, meaning that the proposed method met the execution
time constraint. As a future work, we are considering using
different SLAM algorithms, different 3D LiDAR sensors, and
power consumption in real environments.
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